
Computer Science 161 Weaver

 
Crypto 2

1

Computer Science 161 Weaver

CFB Encryption

2

Computer Science 161 Weaver

CFB Decryption

3

Computer Science 161 Weaver

CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode

• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA

• But a bit worse if you reuse the IV

4

Computer Science 161 Weaver

Error Propagation

5

Computer Science 161 Weaver

Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded

• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping

6

Computer Science 161 Weaver

Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal

$0100”. Mallory intercepts corresponding C

• M = “Pay Mal $0100”. C = “r4ZC#jj8qThMK”

• M10..13 = “0100”. C10..13 = “ThMK”

• Mallory wants to replace some 
bits of C...

7

Computer Science 161 Weaver

Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding
part of the message

• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13

• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message

M with a message M' of equal length!
8

Computer Science 161 Weaver

Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that
was originally sent

• Authentication: Bob can confirm that what he’s received was indeed generated
by Alice

• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary

• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K

• Approach using public-key cryptography (later on):

• “Digital signatures” provide both integrity & authentication together

• Key building block: cryptographically strong hash functions
9

Computer Science 161 Weaver

Hash Functions

• Properties

• Variable input size

• Fixed output size (e.g., 256 bits)

• Efficient to compute

• Pseudo-random (mixes up input extremely well): 

A single bit changes on the input and ~1/2 the bits should change on the output 
 

• Provides a “fingerprint” of a document

• E.g. “shasum -a 256 <exams/mt1-solutions.pdf” prints 

0843b3802601c848f73ccb5013afa2d5c4d424a6ef477890ebf8db9bc4f7d13d

10

Computer Science 161 Weaver

Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y)

• Since input size > output size, collisions do happen

• A cryptographically strong Hash(x)  
provides three properties:

• One-way: h = Hash(x) easy to compute,  
but not to invert.

• Intractable to find any x' s.t. Hash(x') = h,  
for a given h

• Also termed “preimage resistant”

11

H(🐮) =

Computer Science 161 Weaver

Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)

• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it resists

each

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2n/2

hashes

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x

• Plus a hash function should look "random"

• A "PRF" or Pseudo-Random Function

12

Computer Science 161 Weaver

Cryptographically Strong Hash Functions, con’t

• Some contemporary hash functions

• MD5: 128 bits

• broken – lack of collision resistance

• Collisions for the heck of it: https://shells.aachen.ccc.de/~spq/md5.gif  

An MD5 "hash quine": an animated GIF that shows its own hash

• SHA-1: 160 bits broken spring 2017, but was known to be weak yet still used...

• SHA-256/SHA-384/SHA-512: 256, 384, 512 bits in the SHA-2 family, at least not currently broken

• SHA-3: New standard! Yayyy!!!! (Based on Keccak, again 256b, 384b, and 512b options)

• Provide a handy way to unambiguously refer to large documents

• If hash can be securely communicated, provides integrity

• E.g. Mozilla securely publishes SHA-256(new FF binary)

• Anyone who fetches binary can use “cat binary | shasum -a 256” to confirm it’s the right one, untampered

• Not enough by themselves for integrity, since functions are completely known –
Mallory can just compute revised hash value to go with altered message

13

Computer Science 161 Weaver

SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash
algorithm, returning 256b or 384b hashes

• Works on blocks with a truncation routine to make it act on sequences of
arbitrary length

• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s)
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable

from H(s) and len(s)

• New SHA-3 standard (Keccak) does not have this property
14

Computer Science 161 Weaver

Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from

Equifax...

• How can I as a reporter verify this?

• Idea: If I can have the hacker select 10 random lines...

• And in selecting them also say something about the size of the file...

• Voila! Verify those lines and I now know he's not full of BS

• Can I use hashing to write a small script which the BlackHat
Dude can run?

• Where I can easily verify that the 10 lines were sampled at random, and can't
be faked?

15

Computer Science 161 Weaver

Sample a File

16

#!/usr/bin/env python
import hashlib, sys
hashes = {}

for line in sys.stdin:
 line = line.strip()
 for x in range(10):
 tmp = "%s-%i-nickrocks" % (line, x)
 hashval = hashlib.sha256(tmp)
 h = hashval.digest()
 if x not in hashes or hashes[x][0] > h:
 hashes[x] = (h, hashval, tmp)

for x in range(10):
 h, hashval, val = hashes[x]
 print "%s=\"%s\"" % (hashval.hexdigest(), val)

Computer Science 161 Weaver

Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far

• Since the hash appears random...

• Each iteration is an independent selection from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller

• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...

17

Computer Science 161 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K

• Goal: when Bob receives a message, can confidently determine it hasn’t
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)

• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required

• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted

18

Computer Science 161 Weaver

Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M*
• … but doesn’t know shared secret key K

• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him

• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him

• These need to hold even if Mallory can observe many {Mi, Ti} pairs,
including for Mi’s she chose

19

Computer Science 161 Weaver

MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea

• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(M,Kmac),  

send C||T

• Theoretically they are the same, but...

• Once again, its time for ...

20

Computer Science 161 Weaver

HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are

• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site

• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections

21

Computer Science 161 Weaver

The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption

• The Lucky13 attack changes the cipher text in an attempt to discover the
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position

• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!

• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant

22

Computer Science 161 Weaver

The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash

• Reduce/expand the key to a  
single hash block

• XOR the key with the i_pad

• 0x363636... (one hash block long)

• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...

• Hash ((K ⊕ o_pad) || first hash)
23

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Weaver

Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values

to be different

• So for paranoia chose very different bit patterns

• Second hash prevents appending data

• Otherwise attacker could add more to the

message and the HMAC and it would still be a
valid HMAC for the key

• Wouldn't be a problem with the key at the end but at
the start makes it easier to capture intermediate
HMACs

• Is a Pseudo Random Function if the
underlying hash is a PRF

• AKA if you can break this, you can break the hash!

24

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Weaver

Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

Nobody should be able to calculate M given HMAC(M,K) if they know K but
don't know M

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K) if they don't know K

• Its probably safe if you screw up and use the same key for
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!

25

Computer Science 161 Weaver

Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk

image when just a few files change

• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't

• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both

26

Computer Science 161 Weaver

Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data

• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"

• Used right, these are great

• Assuming you use a library...

• Used wrong...

• The AEAD modes are built for "performance", which means parallelization,

which means CTR mode, which means IV reuse is a disaster!
27

Computer Science 161 Weaver

GCM (Galios Counter Mode) 
AEAD Counter Mode
• Ek is just standard encryption

• multh is 128b multiplication over a special field

• Not going into the details of the magic math because I don't

understand it myself

• VERY fast mode of operation

• Fully parallel encryption

• Galios multiplication isn't parallelizeable but it is very light

weight

• Far lighter weight than HMAC-SHA256

• But a huge pitfall....

• If you reuse the IV, not only do you lose confidentiality (like

CTR mode)... 
You lose integrity as well!

• Which wouldn't happen if you used CTR-HMAC-SHA256
28

Computer Science 161 Weaver

A Lot Of Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers

• If an attacker can predict a random number things can
catastrophically fail

29

Computer Science 161 Weaver

Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden

try to play

• The slot machines have predictable pRNG

• Which was based on the current time & a seed

• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely

to win

• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines

specifically designed to address this sort of issue
30

Computer Science 161 Weaver

Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin

• The private key for Bitcoin needs to be
random

• Because otherwise an attacker can spend the

money

• An "Improvment" [sic] to the RNG
reduced the entropy (the actual
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
31

Computer Science 161 Weaver

TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the

CPU

• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"

• Network/disk activity which is often human driven

• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism: It is just one source of the randomness

32

Computer Science 161 Weaver

Combining Entropy

• Many physical entropy sources are biased

• Some have significant biases: e.g. a coin that flips "heads" 90% of the time!

• Some aren't very good: e.g. keystroke timing at a microsecond granularity

• The general procedure is to combine various sources of entropy

• The goal is to be able to take multiple crappy sources of entropy

• Measured in how many bits: 

A single flip of a fair coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all

entropy sources (maxed out by the # of bits in the hash function itself)

• N-1 bad sources and 1 good source -> good pRNG state

33

Computer Science 161 Weaver

Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source

• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string

• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher

• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy

• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})

34

Computer Science 161 Weaver

Properties for the pRNG

• Can a pRNG be truly random?

• No. For seed length s, it can only generate at most 2s distinct possible

sequences.

• A cryptographically strong pRNG “looks” truly random to
an attacker

• Attacker cannot distinguish it from a random sequence: 
If the attacker can tell a sufficiently long bitstream was generated by the
pRNG instead of a truly random source it isn't a good pRNG

35

Computer Science 161 Weaver

Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"

• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one generated by

the pRNG

• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to determine what

the state was at T-1

• More precisely, if presented with two random strings, one truly random and one generated

by the pRNG at time T-1, the attacker should not be able to distinguish between the two

• Rollback resistance isn't specifically required in a pRNG... 

But it should be
36

Computer Science 161 Weaver

Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of
the pRNG

• How? E.g. the pRNG screwed up and instead of an IV, released the internal state, or

the pRNG is bad...

• Attacker observes how the pRNG was used

• T-1 = Random Session key 

T0 = Nonce/IV

• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key! And we are back to...

37

Computer Science 161 Weaver

More on Seeding and Reseeding

• Seeding should take all the different physical entropy
sources available

• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a

high-entropy seed

• Reseeding adds in even more entropy

• F(internal_state, new material)
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the

seed

38

Computer Science 161 Weaver

Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!

• Two internal state registers, V and K

• Each the same size as the hash function's output

• V is used as (part of) the data input into HMAC, while K is the key

• If you can break this pRNG you can either break the underlying

hash function or break a significant assumption about how
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

• So as long as the security proof for HMAC is correct, the security proof for HMAC_DRBG

is correct!
39

Computer Science 161 Weaver

HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal

state

• Prediction resistance:

• If you can distinguish new K from random when you

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the
HMAC construction

• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
40

function hmac_drbg_generate (state, n) {
 tmp = ""
 while(len(tmp) < N){
 state.v = hmac(state.k,state.v)
 tmp = tmp || state.v
 }
 // Update state with no input
 state.k = hmac(state.k, state.v || 0x00)
 state.v = hmac(state.k, state.v)
 // Return the first N bits of tmp
 return tmp[0:N]
}

Computer Science 161 Weaver

HMAC_DRBG 
Update
• Used instead of the "no-input update"

when you have additional entropy on
the generate call

• Used standalone for both instantiate
(state.k = state.v = 0) and reseed
(keep state.k and state.v)

• Designed so that even if the attacker
controls the input but doesn't know k: 
The attacker should not be able to
predict the new k

41

function hmac_drbg_update (state, input) {
 state.k = hmac(state.k, state.v || 0x00
 || input)
 state.v = hmac(state.k, state.v)
 state.k = hmac(state.k, state.v || 0x01
 || input)
 state.v = hmac(state.k, state.v)
}

Computer Science 161 Weaver

Generating true random numbers

• Modern CPUs have true random number generators

• Sample a noisy circuit at a low rate or similar tricks

• These sources are biased...

• They are also slow

• So use this as an entropy source to feed a pRNG on the chip

• Now you can get random numbers quickly

• Very fast

• Vulnerable to tampering!

• You can't actually test that the pRNG circuit is 100% correct without adding paths that

could potentially sabotage the pRNG circuit

• Sabotage that can reduce effective entropy to 32b are possible

42

