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Crypto 4: Public Key
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Twitter Fight Last Year: Nick Vs Rust Rand_Core  
Random Number Generators
• Rust (well, the 3rd party library for it) has an interface for "secure" Random 

Number Generators...  But they aren't actually secure!

• EG, "ChaCha8Rng"

• A reduced round stream cipher!

• That has no update() function: no way of adding in entropy after seeding

• And seed() takes only 32B total (no combining entropy!)

• Oh, and no rollback resistance either


• NONE of the "Secure" RNGs are actually cryptographically secure...

• Because none accept and consume arbitrarily long seeds or have an update to mix in more 

entropy


• When I say ONLY use HMAC_DRBG, I mean it!

• Use /dev/urandom and everything else you can think of to shove into HMAC_DRBG
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And Vuln of the Day: 
CVE-2019-16303
• If you wrote an app in JHipster last year or before...

• You probably want a password reset function...


• Password reset generates "random" URLs

• But of course, they used a bad RNG!


• So generate a password request for your account

• You get the RNGs state in the reset URL


• Now you can generate more password resets...

• And predict what the "random" URL is... 

and take over any account you want!
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Reminder Of Our Primitives So-Far: 
Block Cipher
• Block Cipher: Takes a fixed sized message and fixed-sized key

• E(M, K), Ek(M)

• Corresponding inverse/decryption function Dk(M) 
• Keyed permutation on an N bit block: 

If you don't know the key, it should be indistinguishable from a random permutation

• If you change a single bit of either the input or the key, the output should look 

totally different

• E.g. AES: 128b data blocks, keys are 128, 192, 256 (AES-128, AES-192, AES-256)


• Block Cipher Mode

• A way of repeatedly applying a block cipher on a longer message: 

Goal is to make it independent under chosen plaintext attacks
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Reminder Of Primitives So-Far: 
Hash Function
• Hash takes an arbitrary message M and reduces it to a fixed size

• Should be indistinguishable from a random number

• Change a single bit on the input -> Output looks like a completely different random number

• SHA-256, SHA-384, SHA-512:  SHA2 family outputting 256b, 384b, 512b

• SHA3-256, SHA3-384, SHA3-512: SHA3 family


• Irreversible & resists collisions

• Intractable given H(X) to determine X  

(1st Preimage Resistant)

• Intractable given X, H(X), find X' != X such that H(X) = H(X')  

(2nd Preimage Resistant)

• Intractible to find any X, X', X' != X such that H(X) = H(X') 

(Collision Resistant)
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Reminder Of Primitives So-Far: 
MAC
• MAC takes an arbitrary message M and a key K creating a 

fixed-length tag

• MAC(M,K) -> T

• Without K, it is infeasible to create M' such that MAC(M', K) -> T

• Without K, it is infeasible to create M', T' such that MAC(M', K) -> T'

• But with K, of course you can create a valid M', T' pair

• And for some MACs create M' which MACs to T


• Several alternatives but only One True MAC to use: 
HMAC

• Construct using hash functions to create a MAC: 

Has all the previous properties of a hash plus all the properties of a MAC
6



Computer Science 161 Fall 2020 Weaver

Reminder Of Primitives So-Far: 
pRNG (Pseudo Random Number Generator)
• Three operations:

• seed(entropy):  Set internal state based on arbitrarily long, truly random inputs

• update(entropy): Add in additional entropy 

Update with 0-entropy should not degrade internal state

• generate(length): Generate an n bit string that should be indistinguishable from 

random


• If you know the internal state it is fully predictable

• If you don't it should be indistinguishable from random

• HMAC_DRBG is the absolute best

• Also has rollback resistance, if you learned the internal state at time T, you can't 

predict previous outputs
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Public Key...

• All our previous primitives required a "miracle":

• We somehow have to have Alice and Bob get a shared k.


• Enter Public Key cryptography: the miracle of modern cryptography

• How starting Friday, but what today


• Three primitives:

• Public Key Agreement (previous Ephemeral Diffie/Hellman)

• Public Key Encryption

• Public Key Signatures


• Based on some families of magic math...

• For us, we will use some group-theory based primitives
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Public Key Agreement

• Alice and Bob have a channel...

• There may be an eavesdropper but not a manipulator


• The goal: Alice & Bob agree on a random value

• This will be k for all subsequent communication


• When done, the key is thrown away

• Designed to prevent an attacker who later recovers Alice or Bob's long lived 

secrets from finding k.
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Reminder of Primitives So Far: 
Ephemeral Diffie/Hellman Key Exchange
• Public values: prime p, generator g

• Elliptic curve: different magic math, fewer bits (256b/384b instead of 2048b/3096b for 

the same security)


• Alice creates random a,  0<a<p, computes A = ga mod p, sends it

• Bob creates random b, 0<b<p, computers B = gb mod p, sends it

• Alice computes Ba mod P = gab mod P = K

• Bob computes Ab mod P = gab mod P = K

• Thought to be hard to go backwards (discrete log) to a given A
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Public Key Encryption

• Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret

• Sometimes written as Kalice, K-1alice


• Anyone has access to Alice's public key

• For anyone to send a message to Alice:

• Create a random session key k

• Used to encrypt the rest of the message


• Encrypt k using Alice's Kpub.


• Only Alice can decrypt the message

• The decryption function only works with Kpriv!
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Public Key Signatures

• Once again, Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret


• She can sign a message

• Calculate H(M)

• S(Kpriv, H(M)): Sign H(M) with Kpriv. 

• Anyone can now verify

• Recalculate H(M)

• V(Kpub, S(Kpriv, H(M)), H(M)): Verify that the signature was created with Kpriv
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Things To Remember...

• Public key is slow!

• Orders of magnitude slower than symmetric key


• Public key is based on delicate magic math

• Discrete log in a group is the most common

• RSA

• Some new "post-quantum" magic...


• Some systems in particular are easy to get wrong

• We will get to some of the epic crypto-fails later

13



Computer Science 161 Fall 2020 Weaver

Our Roadmap For Public Key...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key


• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key
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Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime


• Alice then computes n = p*q and φ(n) = (p-1)(q-1)  
• φ(n) is Euler's totient function, in this case for a composite of two primes

• n is big: 2048b to 4096b long! 

• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small


• Solve for d = e-1 mod φ(n) 
• You can't solve for d without knowing φ(n), which requires knowing p and q


• n, e are public, d, p, q, and φ(n) are secret
15
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RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e, 

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.


• And factoring is believed to be hard to do


• Alice computes m = cd mod n = med mod n

• Time for some math magic...
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RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n 
• Now recall that d is the multiplicative inverse of e, modulo φ(n), and 

thus: 
	e∙d = 1 mod φ(n)    (by definition) 
	e∙d - 1 = k∙φ(n)       for some k


• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n 
=[(Mφ(n))k]∙M mod n 
=(1k)∙M mod n           by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

17(believed) Eve can recover M from C iff Eve can factor n=p∙q
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But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!


• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc


• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !


• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
18



Computer Science 161 Fall 2020 Weaver

RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random 

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R 

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G 
and H being functions of k rather than just fixed operations


• This is more than just block-cipher padding (which 
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be 

encrypted "random"
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So How Does This Work?

• G and H are not (necessarily) reversible

• EG, for OAEP it is a hash function: 

Designed to mix in the randomness and make it 
uniform


• Needed for RSA because we want to only ever 
encrypt "random" values with the public key


• And since r is random and G is a hash, m is 
xor'ed with random...


• Which is then hashed and XOR'ed back into r to 
produce Y


• But XOR is!

• So we do H(X) xor Y to recover r

• And now G(r) xor X to recover m
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But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for 

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of 

knowing p and q directly... 
but also leak timing


• People have used this to guess and then 
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf


• And even more subtle things are possible...

21

    x = C
    for j = 1 to n
        x = mod(x2, N)
        if dj == 1 then
           x = mod(xC, N) 
        end if
    next j
    return x
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So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!


• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"


• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what 

Alice remembers


• Works assuming the first time Alice talks to Bob there isn't a 
Man-in-the-Middle

• ssh uses this
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RSA Signatures...

• Alice computes a hash of the message H(m) 
• Alice then computes s = (H(m))d mod n


• Anyone can then verify 

• v = se mod m = ((H(m))d)e mod n = H(m) 

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")
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But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)


• Only Bob can decrypt the message, and Bob can verify the 
message came from Alice


• So Mallory is SOL!
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RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably 

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is


• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman 

problem

25
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El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared: 

Note, they need to be carefully considered how to create p and g... 
Math beyond the level of this class


• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key


• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob


• Maps message m to create m', calculates c2 = m' * s mod p  

• Bob then sends {c1, c2}
26



Computer Science 161 Fall 2020 Weaver

El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p  
• Then Alice calculates the inverse of the mapping to get m


• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2  = m1' * s mod p 

c2' = m2' * s mod p 
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2' 
• So if you know m1...
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In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a 
session key..

• And then encrypt the real message with the session key

• You never actually encrypt the message itself with the public key algorithm

• Often a set of keys: encrypt and MAC keys that are separate in each direction


• Why?

• Public key is slow...  Orders of magnitude slower than symmetric key

• Public key may cause weird effects:

• EG, El Gamal where an attacker can change the message to 2m...

• If m had meaning, this would be a problem

• But if it just changes the encryption and MAC keys, the main message won't decrypt
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DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256 
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters


• Alice creates her own random private key x < q

• Public key y = gx mod p

29
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Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q 
• If r = 0, start again


• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again


• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)


• Verification

• w = s-1 mod q 
• u1 = H(m) * w mod q 
• u2 = r * w mod q 
• v = (gu1yu2 mod p) mod q 
• Validate that v = r
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But Easy To Screw Up...

• k is not just a nonce...  It must be random and secret

• If you know k, you can calculate x


• And even if you just reuse a random k... 
for two signatures sa and sb


• A bit of algebra proves that k = (HA – HB) / (sa – sb) 

•  A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
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And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed 

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems 

(Linux) that they then removed 


• Of course this was catnip to reverse engineers

• Best way to get people interested: 

remove Linux from a device...


• It turns for out one of the key authentication 
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!
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And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same 

value multiple times


• Multiple Bitcoin wallet apps on Android were 
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see


• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k


• So of course someone scanned for all such  
Bitcoin transactions
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And Still Happens! 
Chromebook 
• Chromebooks have a built in U2F "Security key"

• Enables signatures using 256b ECDSA to validate to particular websites


• There was a bug in the secure hardware!

• Instead of using a random k that was 256b long, a bug caused it to be 32b long!

• So an attacker who had a signature could simply try all possible k values!


• Fortunately in this case the damage 
was slight: this is for authenticating to  
a single website: each site used its own 
private key


• But still...

• https://www.chromium.org/chromium-os/u2f-ecdsa-vulnerability
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So What To Use?

• Paranoids like me: 
Good libraries and use the parameters from NSA's CNSA suite

• Open algorithms approved for Top Secret communication

• Better yet, libraries that implement full protocols that use these under the hood!


• Symmetric cipher: AES: 256b

• CFB mode, thankyouverymuch.  Counter mode and modes which include counter mode can DIAF...


• Hash function: SHA-384

• Use HMAC for MAC


• RSA: 3072b

• Diffie/Hellman: 3072b

• ECDH/ECDSA: P-384

• But really, this is extra paranoid: 

2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice
35



Computer Science 161 Fall 2020 Weaver

How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve 
confidentiality, integrity & authentication without shared 
secrets …


• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone 

we want to communicate with?


• Ideas?
36
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Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to 
confirm each individual’s public key


• Say the Governor of California


• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work; single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …
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Gavin Newsom's Public Key is 
0x6a128b3d3dc67edc74d690b19e072f64 
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Trust Anchors

• Suppose the trusted party distributes their key so everyone 
has it …


• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes

42
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Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed attestation about some claim


• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”


• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M,   
     {“Nick's public key … 0xF32A99B...” }K -1Gavin 
		 = 0x923AB95E12...9772F
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44

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F 
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F 
 
 

45

This
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F 
 
 

46

is computed over all of this



Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F 
 
 

47

and can be 
validated using:
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Gavin Newsom hearby asserts: 
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using  
K-1Gavin is 0x923AB95E12...9772F 
 
 

48

This:
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If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Gavin's key, then whether he indeed signed the statement

• If we trust Gavin’s decisions, then we have confidence we really have Nick's 

key


• Trust = ?

• Gavin won’t willy-nilly sign such statements

• Gavin won’t let his private key be stolen
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Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!


• However: if someone demonstrates they can decrypt data 
encrypted with Knick, then we have high confidence they 
possess K-1Nick


• Same for if they show they can sign “using” K-1Nick
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Scaling Digital Certificates

• How can this possibly scale?  Surely Gavin can’t sign 
everyone’s public key!


• Approach #1: Introduce hierarchy via delegation

• { “Michael V. Drake's public key is 0x... and I trust him to vouch for UC” }K -1Gavin

• { “Carol Christ’s public key is 0x... and I trust her to vouch for UCB” }K -1Mike

• { “John Canny's public key is 0x... and I trust him to vouch for CS” }K -1Carol

• { “Nick Weaver's public key is 0x...” }K -1John
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Scaling Digital Certificates, con’t

• I put this last certificate on my web page

• (or shoves it under your door)


• Anyone who can gather the intermediary keys can validate the 
chain

• They can get these (other than Gavin’s) from anywhere because they can validate 

them, too

• In fact, I may as well just include those certs as well, just to make sure you don't gave 

to go search for them


• Approach #2: have multiple trusted parties who are in the 
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)
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Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see 

below ...)


• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob
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Bob

b

CA

B

Is this 
really 
Bob?

{Bob: B}K-1
CA
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Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

I’d like to 
talk privately 
with Bob
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56

Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

Does CA’s 
signature on 
B validate?

Mi

Ci = E(Mi, B)
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Bob

b*

CA

B*

Is this 
really 
Bob?

Mallory

X
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Bob

CA

Is this 
really 
Mal?

{Mal: B*}K-1
CA

b*

Mallory

B*
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BobAlice

Mi

{Mal: B*}K-1
CA

b*

B*

Mallory

I’d like to 
talk privately 
with Bob
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60

BobAlice

Mi

{Mal: B*}K-1
CA

Wait, I want 
to talk to Bob, 
not Mallory!

b*

B*

Mallory

X



Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s 
name to Mallory?
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BobAlice

Mi

{Bob: B*}K-1
CA

b*

B*

Mallory

I’d like to 
talk privately 
with Bob

{Bob: B*}K-1
CA



Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s name 
to Mallory?

• E.g. Verisign issued a Microsoft.com cert to a Random Joe

• (Related problem: Bob realizes b has been stolen)


• How do we recover from the error? 
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation

• LetsEncrypt decided to make this VERY short 

to force continual updating
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?
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Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)


• Issues?

• Lists can get large

• Need to authenticate the list itself – how?  Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!


• Use old list: widens exploitation window 
if Mallory can “DoS” CA  (DoS = denial-of-service)
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Biggest Problem is Often 
Complexity
• The X509 "standard" for certificates is incredibly 

complicated

• Why?  Because it tried to do everything...


• If you want your eyes to bleed...

• https://tools.ietf.org/html/rfc5280


•
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The (Failed) Alternative: 
The “Web Of Trust”
• Alice signs Bob’s Key

• Bob Sign’s Carol’s


• So now if Dave has Alice’s key, Dave can believe Bob’s key 
and Carol’s key…


• Eventually you get a graph/web of trust…


• PGP started out with this model

• You would even have PGP key signing parties

• But it proved to be a disaster: 

Trusting central authorities can make these problems so much simpler!
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