
Computer Science 161 Fall 2020 Weaver

 
Crypto 4: Public Key

1

Computer Science 161 Fall 2020 Weaver

Twitter Fight Last Year: Nick Vs Rust Rand_Core  
Random Number Generators
• Rust (well, the 3rd party library for it) has an interface for "secure" Random

Number Generators... But they aren't actually secure!

• EG, "ChaCha8Rng"

• A reduced round stream cipher!

• That has no update() function: no way of adding in entropy after seeding

• And seed() takes only 32B total (no combining entropy!)

• Oh, and no rollback resistance either

• NONE of the "Secure" RNGs are actually cryptographically secure...

• Because none accept and consume arbitrarily long seeds or have an update to mix in more

entropy

• When I say ONLY use HMAC_DRBG, I mean it!

• Use /dev/urandom and everything else you can think of to shove into HMAC_DRBG

2

Computer Science 161 Fall 2020 Weaver

And Vuln of the Day: 
CVE-2019-16303
• If you wrote an app in JHipster last year or before...

• You probably want a password reset function...

• Password reset generates "random" URLs

• But of course, they used a bad RNG!

• So generate a password request for your account

• You get the RNGs state in the reset URL

• Now you can generate more password resets...

• And predict what the "random" URL is... 

and take over any account you want!
3

Computer Science 161 Fall 2020 Weaver

Reminder Of Our Primitives So-Far: 
Block Cipher
• Block Cipher: Takes a fixed sized message and fixed-sized key

• E(M, K), Ek(M)

• Corresponding inverse/decryption function Dk(M)
• Keyed permutation on an N bit block: 

If you don't know the key, it should be indistinguishable from a random permutation

• If you change a single bit of either the input or the key, the output should look

totally different

• E.g. AES: 128b data blocks, keys are 128, 192, 256 (AES-128, AES-192, AES-256)

• Block Cipher Mode

• A way of repeatedly applying a block cipher on a longer message: 

Goal is to make it independent under chosen plaintext attacks
4

Computer Science 161 Fall 2020 Weaver

Reminder Of Primitives So-Far: 
Hash Function
• Hash takes an arbitrary message M and reduces it to a fixed size

• Should be indistinguishable from a random number

• Change a single bit on the input -> Output looks like a completely different random number

• SHA-256, SHA-384, SHA-512: SHA2 family outputting 256b, 384b, 512b

• SHA3-256, SHA3-384, SHA3-512: SHA3 family

• Irreversible & resists collisions

• Intractable given H(X) to determine X  

(1st Preimage Resistant)

• Intractable given X, H(X), find X' != X such that H(X) = H(X')  

(2nd Preimage Resistant)

• Intractible to find any X, X', X' != X such that H(X) = H(X') 

(Collision Resistant)
5

Computer Science 161 Fall 2020 Weaver

Reminder Of Primitives So-Far: 
MAC
• MAC takes an arbitrary message M and a key K creating a

fixed-length tag

• MAC(M,K) -> T

• Without K, it is infeasible to create M' such that MAC(M', K) -> T

• Without K, it is infeasible to create M', T' such that MAC(M', K) -> T'

• But with K, of course you can create a valid M', T' pair

• And for some MACs create M' which MACs to T

• Several alternatives but only One True MAC to use: 
HMAC

• Construct using hash functions to create a MAC: 

Has all the previous properties of a hash plus all the properties of a MAC
6

Computer Science 161 Fall 2020 Weaver

Reminder Of Primitives So-Far: 
pRNG (Pseudo Random Number Generator)
• Three operations:

• seed(entropy): Set internal state based on arbitrarily long, truly random inputs

• update(entropy): Add in additional entropy 

Update with 0-entropy should not degrade internal state

• generate(length): Generate an n bit string that should be indistinguishable from

random

• If you know the internal state it is fully predictable

• If you don't it should be indistinguishable from random

• HMAC_DRBG is the absolute best

• Also has rollback resistance, if you learned the internal state at time T, you can't

predict previous outputs
7

Computer Science 161 Fall 2020 Weaver

Public Key...

• All our previous primitives required a "miracle":

• We somehow have to have Alice and Bob get a shared k.

• Enter Public Key cryptography: the miracle of modern cryptography

• How starting Friday, but what today

• Three primitives:

• Public Key Agreement (previous Ephemeral Diffie/Hellman)

• Public Key Encryption

• Public Key Signatures

• Based on some families of magic math...

• For us, we will use some group-theory based primitives

8

Computer Science 161 Fall 2020 Weaver

Public Key Agreement

• Alice and Bob have a channel...

• There may be an eavesdropper but not a manipulator

• The goal: Alice & Bob agree on a random value

• This will be k for all subsequent communication

• When done, the key is thrown away

• Designed to prevent an attacker who later recovers Alice or Bob's long lived

secrets from finding k.

9

Computer Science 161 Fall 2020 Weaver

Reminder of Primitives So Far: 
Ephemeral Diffie/Hellman Key Exchange
• Public values: prime p, generator g

• Elliptic curve: different magic math, fewer bits (256b/384b instead of 2048b/3096b for

the same security)

• Alice creates random a, 0<a<p, computes A = ga mod p, sends it

• Bob creates random b, 0<b<p, computers B = gb mod p, sends it

• Alice computes Ba mod P = gab mod P = K

• Bob computes Ab mod P = gab mod P = K

• Thought to be hard to go backwards (discrete log) to a given A

10

Computer Science 161 Fall 2020 Weaver

Public Key Encryption

• Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret

• Sometimes written as Kalice, K-1alice

• Anyone has access to Alice's public key

• For anyone to send a message to Alice:

• Create a random session key k

• Used to encrypt the rest of the message

• Encrypt k using Alice's Kpub.

• Only Alice can decrypt the message

• The decryption function only works with Kpriv!

11

Computer Science 161 Fall 2020 Weaver

Public Key Signatures

• Once again, Alice has two keys:

• Kpub: Her public key, anyone can know

• Kpriv: Her private key, a deep dark secret

• She can sign a message

• Calculate H(M)

• S(Kpriv, H(M)): Sign H(M) with Kpriv.

• Anyone can now verify

• Recalculate H(M)

• V(Kpub, S(Kpriv, H(M)), H(M)): Verify that the signature was created with Kpriv

12

Computer Science 161 Fall 2020 Weaver

Things To Remember...

• Public key is slow!

• Orders of magnitude slower than symmetric key

• Public key is based on delicate magic math

• Discrete log in a group is the most common

• RSA

• Some new "post-quantum" magic...

• Some systems in particular are easy to get wrong

• We will get to some of the epic crypto-fails later

13

Computer Science 161 Fall 2020 Weaver

Our Roadmap For Public Key...

• Public Key:

• Something everyone can know

• Private Key:

• The secret belonging to a specific person

• Diffie/Hellman:

• Provides key exchange with no pre-shared secret

• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key

• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key

14

Computer Science 161 Fall 2020 Weaver

Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime

• Alice then computes n = p*q and φ(n) = (p-1)(q-1)
• φ(n) is Euler's totient function, in this case for a composite of two primes

• n is big: 2048b to 4096b long!

• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small

• Solve for d = e-1 mod φ(n)
• You can't solve for d without knowing φ(n), which requires knowing p and q

• n, e are public, d, p, q, and φ(n) are secret
15

Computer Science 161 Fall 2020 Weaver

RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e,

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.

• And factoring is believed to be hard to do

• Alice computes m = cd mod n = med mod n

• Time for some math magic...

16

Computer Science 161 Fall 2020 Weaver

RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n
• Now recall that d is the multiplicative inverse of e, modulo φ(n), and

thus: 
	e∙d = 1 mod φ(n) (by definition) 
	e∙d - 1 = k∙φ(n) for some k

• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n
=[(Mφ(n))k]∙M mod n
=(1k)∙M mod n by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

17(believed) Eve can recover M from C iff Eve can factor n=p∙q

Computer Science 161 Fall 2020 Weaver

But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!

• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc

• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !

• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
18

Computer Science 161 Fall 2020 Weaver

RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G
and H being functions of k rather than just fixed operations

• This is more than just block-cipher padding (which
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be

encrypted "random"
19

Computer Science 161 Fall 2020 Weaver

So How Does This Work?

• G and H are not (necessarily) reversible

• EG, for OAEP it is a hash function: 

Designed to mix in the randomness and make it
uniform

• Needed for RSA because we want to only ever
encrypt "random" values with the public key

• And since r is random and G is a hash, m is
xor'ed with random...

• Which is then hashed and XOR'ed back into r to
produce Y

• But XOR is!

• So we do H(X) xor Y to recover r

• And now G(r) xor X to recover m

20

Computer Science 161 Fall 2020 Weaver

But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of

knowing p and q directly... 
but also leak timing

• People have used this to guess and then
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

• And even more subtle things are possible...

21

 x = C
 for j = 1 to n
 x = mod(x2, N)
 if dj == 1 then
 x = mod(xC, N)
 end if
 next j
 return x

Computer Science 161 Fall 2020 Weaver

So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!

• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"

• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what

Alice remembers

• Works assuming the first time Alice talks to Bob there isn't a
Man-in-the-Middle

• ssh uses this

22

Computer Science 161 Fall 2020 Weaver

RSA Signatures...

• Alice computes a hash of the message H(m)
• Alice then computes s = (H(m))d mod n

• Anyone can then verify

• v = se mod m = ((H(m))d)e mod n = H(m)

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")

23

Computer Science 161 Fall 2020 Weaver

But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)

• Only Bob can decrypt the message, and Bob can verify the
message came from Alice

• So Mallory is SOL!

24

Computer Science 161 Fall 2020 Weaver

RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is

• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman

problem

25

Computer Science 161 Fall 2020 Weaver

El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared: 

Note, they need to be carefully considered how to create p and g... 
Math beyond the level of this class

• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key

• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob

• Maps message m to create m', calculates c2 = m' * s mod p

• Bob then sends {c1, c2}
26

Computer Science 161 Fall 2020 Weaver

El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p
• Then Alice calculates the inverse of the mapping to get m

• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2 = m1' * s mod p 

c2' = m2' * s mod p
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2'
• So if you know m1...

27

Computer Science 161 Fall 2020 Weaver

In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a
session key..

• And then encrypt the real message with the session key

• You never actually encrypt the message itself with the public key algorithm

• Often a set of keys: encrypt and MAC keys that are separate in each direction

• Why?

• Public key is slow... Orders of magnitude slower than symmetric key

• Public key may cause weird effects:

• EG, El Gamal where an attacker can change the message to 2m...

• If m had meaning, this would be a problem

• But if it just changes the encryption and MAC keys, the main message won't decrypt

28

Computer Science 161 Fall 2020 Weaver

DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters

• Alice creates her own random private key x < q

• Public key y = gx mod p

29

Computer Science 161 Fall 2020 Weaver

Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q
• If r = 0, start again

• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again

• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)

• Verification

• w = s-1 mod q
• u1 = H(m) * w mod q
• u2 = r * w mod q
• v = (gu1yu2 mod p) mod q
• Validate that v = r

30

Computer Science 161 Fall 2020 Weaver

But Easy To Screw Up...

• k is not just a nonce... It must be random and secret

• If you know k, you can calculate x

• And even if you just reuse a random k... 
for two signatures sa and sb

• A bit of algebra proves that k = (HA – HB) / (sa – sb)

• A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

31

Computer Science 161 Fall 2020 Weaver

And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems

(Linux) that they then removed

• Of course this was catnip to reverse engineers

• Best way to get people interested: 

remove Linux from a device...

• It turns for out one of the key authentication
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!

32

Computer Science 161 Fall 2020 Weaver

And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same

value multiple times

• Multiple Bitcoin wallet apps on Android were
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see

• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k

• So of course someone scanned for all such  
Bitcoin transactions

33

Computer Science 161 Fall 2020 Weaver

And Still Happens! 
Chromebook
• Chromebooks have a built in U2F "Security key"

• Enables signatures using 256b ECDSA to validate to particular websites

• There was a bug in the secure hardware!

• Instead of using a random k that was 256b long, a bug caused it to be 32b long!

• So an attacker who had a signature could simply try all possible k values!

• Fortunately in this case the damage 
was slight: this is for authenticating to  
a single website: each site used its own 
private key

• But still...

• https://www.chromium.org/chromium-os/u2f-ecdsa-vulnerability

34

Computer Science 161 Fall 2020 Weaver

So What To Use?

• Paranoids like me: 
Good libraries and use the parameters from NSA's CNSA suite

• Open algorithms approved for Top Secret communication

• Better yet, libraries that implement full protocols that use these under the hood!

• Symmetric cipher: AES: 256b

• CFB mode, thankyouverymuch. Counter mode and modes which include counter mode can DIAF...

• Hash function: SHA-384

• Use HMAC for MAC

• RSA: 3072b

• Diffie/Hellman: 3072b

• ECDH/ECDSA: P-384

• But really, this is extra paranoid: 

2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice
35

Computer Science 161 Fall 2020 Weaver

How Can We Communicate With Someone New?

• Public-key crypto gives us amazing capabilities to achieve
confidentiality, integrity & authentication without shared
secrets …

• But how do we solve MITM attacks?

• How can we trust we have the true public key for someone

we want to communicate with?

• Ideas?
36

Computer Science 161 Fall 2020 Weaver

Trusted Authorities

• Suppose there’s a party that everyone agrees to trust to
confirm each individual’s public key

• Say the Governor of California

• Issues with this approach?

• How can everyone agree to trust them?

• Scaling: huge amount of work; single point of failure …

• ... and thus Denial-of-Service concerns

• How do you know you’re talking to the right authority??

37

Computer Science 161 Fall 2020 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

38

Computer Science 161 Fall 2020 Weaver

39

Computer Science 161 Fall 2020 Weaver

40

Computer Science 161 Fall 2020 Weaver

41

Gavin Newsom's Public Key is
0x6a128b3d3dc67edc74d690b19e072f64

Computer Science 161 Fall 2020 Weaver

Trust Anchors

• Suppose the trusted party distributes their key so everyone
has it …

• We can then use this to bootstrap trust

• As long as we have confidence in the decisions that that party makes

42

Computer Science 161 Fall 2020 Weaver

Digital Certificates

• Certificate (“cert”) = signed claim about someone’s public key

• More broadly: a signed attestation about some claim

• Notation: 
	{ M }K = “message M encrypted with public key k” 
	{ M }K-1 = “message M signed w/ private key for K”

• E.g. M = “Nick's public key is KNick = 0xF32A99B...” 
Cert: M,  
 {“Nick's public key … 0xF32A99B...” }K -1Gavin 
		 = 0x923AB95E12...9772F

43

Computer Science 161 Fall 2020 Weaver

44

Gavin Newsom hearby asserts:
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using
K-1Gavin is 0x923AB95E12...9772F

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts:
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using
K-1Gavin is 0x923AB95E12...9772F

45

This

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts:
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using
K-1Gavin is 0x923AB95E12...9772F

46

is computed over all of this

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts:
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using
K-1Gavin is 0x923AB95E12...9772F

47

and can be
validated using:

Computer Science 161 Fall 2020 Weaver

Gavin Newsom hearby asserts:
Nick’s public key is KNick = 0xF32A99B...
The signature for this statement using
K-1Gavin is 0x923AB95E12...9772F

48

This:

Computer Science 161 Fall 2020 Nicholas Weaver

If We Find This Cert  
Shoved Under Our Door …
• What can we figure out?

• If we know Gavin's key, then whether he indeed signed the statement

• If we trust Gavin’s decisions, then we have confidence we really have Nick's

key

• Trust = ?

• Gavin won’t willy-nilly sign such statements

• Gavin won’t let his private key be stolen

49

Computer Science 161 Fall 2020 Nicholas Weaver

Analyzing Certs Shoved Under Doors …

• How we get the cert doesn’t affect its utility

• Who gives us the cert doesn’t matter

• They’re not any more or less trustworthy because they did

• Possessing a cert doesn’t establish any identity!

• However: if someone demonstrates they can decrypt data
encrypted with Knick, then we have high confidence they
possess K-1Nick

• Same for if they show they can sign “using” K-1Nick

50

Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates

• How can this possibly scale? Surely Gavin can’t sign
everyone’s public key!

• Approach #1: Introduce hierarchy via delegation

• { “Michael V. Drake's public key is 0x... and I trust him to vouch for UC” }K -1Gavin

• { “Carol Christ’s public key is 0x... and I trust her to vouch for UCB” }K -1Mike

• { “John Canny's public key is 0x... and I trust him to vouch for CS” }K -1Carol

• { “Nick Weaver's public key is 0x...” }K -1John

51

Computer Science 161 Fall 2020 Nicholas Weaver

Scaling Digital Certificates, con’t

• I put this last certificate on my web page

• (or shoves it under your door)

• Anyone who can gather the intermediary keys can validate the
chain

• They can get these (other than Gavin’s) from anywhere because they can validate

them, too

• In fact, I may as well just include those certs as well, just to make sure you don't gave

to go search for them

• Approach #2: have multiple trusted parties who are in the
business of signing certs …

• (The certs might also be hierarchical, per Approach #1)

52

Computer Science 161 Fall 2020 Nicholas Weaver

Certificate Authorities

• CAs are trusted parties in a Public Key Infrastructure (PKI)

• They can operate offline

• They sign (“cut”) certs when convenient, not on-the-fly (… though see

below ...)

• Suppose Alice wants to communicate confidentially w/ Bob:

• Bob gets a CA to issue {Bob’s public key is B} K -1CA

• Alice gets Bob’s cert any old way

• Alice uses her known value of KCA to verify cert’s signature

• Alice extracts B, sends {M}KB to Bob

53

Computer Science 161 Fall 2020 Nicholas Weaver

54

Bob

b

CA

B

Is this
really
Bob?

{Bob: B}K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

55

Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

I’d like to
talk privately
with Bob

Computer Science 161 Fall 2020 Nicholas Weaver

56

Bob

b
B

Alice

Mi

{Bob: B}K-1
CA

Does CA’s
signature on
B validate?

Mi

Ci = E(Mi, B)

Computer Science 161 Fall 2020 Nicholas Weaver

57

Bob

b*

CA

B*

Is this
really
Bob?

Mallory

X

Computer Science 161 Fall 2020 Nicholas Weaver

58

Bob

CA

Is this
really
Mal?

{Mal: B*}K-1
CA

b*

Mallory

B*

Computer Science 161 Fall 2020 Nicholas Weaver

59

BobAlice

Mi

{Mal: B*}K-1
CA

b*

B*

Mallory

I’d like to
talk privately
with Bob

Computer Science 161 Fall 2020 Nicholas Weaver

60

BobAlice

Mi

{Mal: B*}K-1
CA

Wait, I want
to talk to Bob,
not Mallory!

b*

B*

Mallory

X

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s
name to Mallory?

61

Computer Science 161 Fall 2020 Nicholas Weaver

62

BobAlice

Mi

{Bob: B*}K-1
CA

b*

B*

Mallory

I’d like to
talk privately
with Bob

{Bob: B*}K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation

• What do we do if a CA screws up and issues a cert in Bob’s name
to Mallory?

• E.g. Verisign issued a Microsoft.com cert to a Random Joe

• (Related problem: Bob realizes b has been stolen)

• How do we recover from the error?
• Approach #1: expiration dates

• Mitigates possible damage

• But adds management burden

• Benign failures to renew will 

break normal operation

• LetsEncrypt decided to make this VERY short 

to force continual updating
63

{Bob: B,  
Exp: 3/31/21}K-1CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

64

Computer Science 161 Fall 2020 Nicholas Weaver

65

BobAlice

b*

B*

Mallory

Time for my
weekly revoked
cert download

CA

Revoked
Certs
…

{Bob: B*}K-1
CA

…CRL = Certificate
Revocation List

Computer Science 161 Fall 2020 Nicholas Weaver

66

BobAlice

b*

B*

Mallory

Oof!

CA

Revoked
Certs
…

{Bob: B*}K-1
CA

…

CRL = Certificate
Revocation List

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how?

67

Computer Science 161 Fall 2020 Nicholas Weaver

68

BobAlice

b*

B*

Mallory

Time for my
weekly revoked
cert download

CA

Revoked
Certs
…

{Bob: B*}K-1
CA

…CRL = Certificate
Revocation List

K-1
CA

Computer Science 161 Fall 2020 Nicholas Weaver

Revocation, con’t

• Approach #2: announce revoked certs

• Users periodically download cert revocation list (CRL)

• Issues?

• Lists can get large

• Need to authenticate the list itself – how? Sign it!

• Mallory can exploit download lag

• What does Alice do if can’t reach CA for  

download?

• Assume all certs are invalid (fail-safe defaults)

• Wow, what an unhappy failure mode!

• Use old list: widens exploitation window 
if Mallory can “DoS” CA (DoS = denial-of-service)

69

Computer Science 161 Fall 2020 Nicholas Weaver

Biggest Problem is Often 
Complexity
• The X509 "standard" for certificates is incredibly

complicated

• Why? Because it tried to do everything...

• If you want your eyes to bleed...

• https://tools.ietf.org/html/rfc5280

•

70

Computer Science 161 Fall 2020 Nicholas Weaver

The (Failed) Alternative: 
The “Web Of Trust”
• Alice signs Bob’s Key

• Bob Sign’s Carol’s

• So now if Dave has Alice’s key, Dave can believe Bob’s key
and Carol’s key…

• Eventually you get a graph/web of trust…

• PGP started out with this model

• You would even have PGP key signing parties

• But it proved to be a disaster: 

Trusting central authorities can make these problems so much simpler!

71

