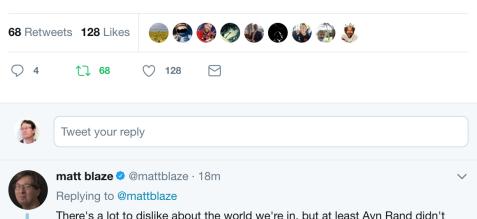
Network Security 5


7:08 AM - 23 Oct 2017

Cryptocurrency somehow combines everything we love about religious fanatics with everything we love about Ponzi schemes.

Weaver

 \sim

Following

There's a lot to dislike about the world we're in, but at least Ayn Rand didn't have bitcoin to write about.

Hack of the Day: International House of Pancakes

Computer Science 161

- IHOP uses Accellion's File Transfer Appliance
 - Effectively a customized web/data server for transferring sensitive data with access controls
 - So any data on the appliance was innately sensitive!
 - Oh, and technically discontinued months ago and end-of-life'd, but
 - Which had 4 vulnerabilities discovered in December and January: 1x SQL injection (translation: no prepared SQL) 2x OS Command Injection (translation: using system instead of execve) 1x SSRF
- Two separate criminal gangs massively exploited these systems
 - And are now threatening IHOP with releasing data...
 - And others are following on and using that data for further attacks...

April Fools!!!!

Computer Science 161

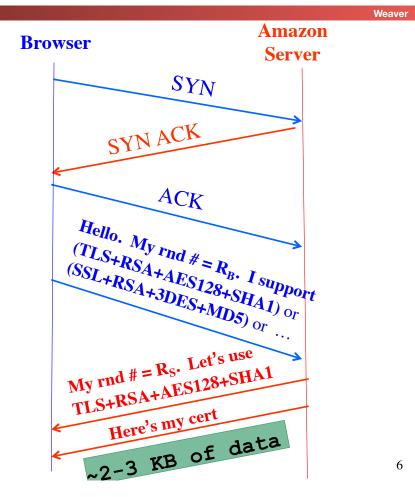
- IHOP is one of the few big companies not affected by this data breach...
 - But the breach is very very real and going to be very very expensive
- Because, lets correct the slide...

Hack of the Day: International House of Pancakes UC Berkeley

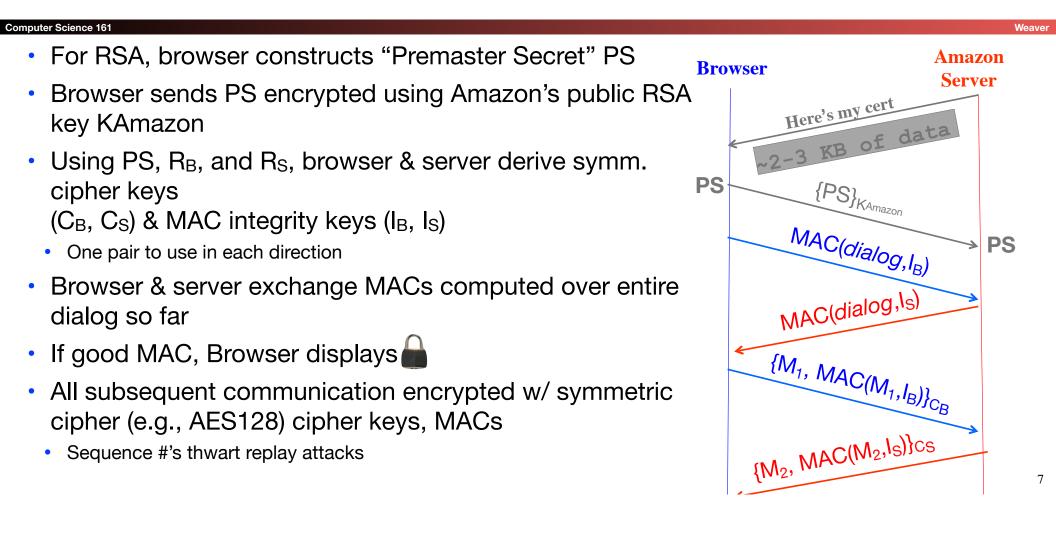
- Weaver
- IHOP UC Berkeley uses Accellion's File Transfer Appliance
 - Effectively a customized web/data server for transferring sensitive data with access controls
 - So any data on the appliance was innately sensitive!
 - Oh, and technically discontinued months ago and end-of-life'd, but
 - Which had 4 vulnerabilities discovered in December and January: 1x SQL injection (translation: no prepared SQL) 2x OS Command Injection (translation: using system instead of execve) 1x SSRF
- Two separate criminal gangs massively exploited these systems
- And are now threatening UC Berkeley with releasing data...
- And others are following on and using that data for further attacks...

And Thus The Scary Emails...

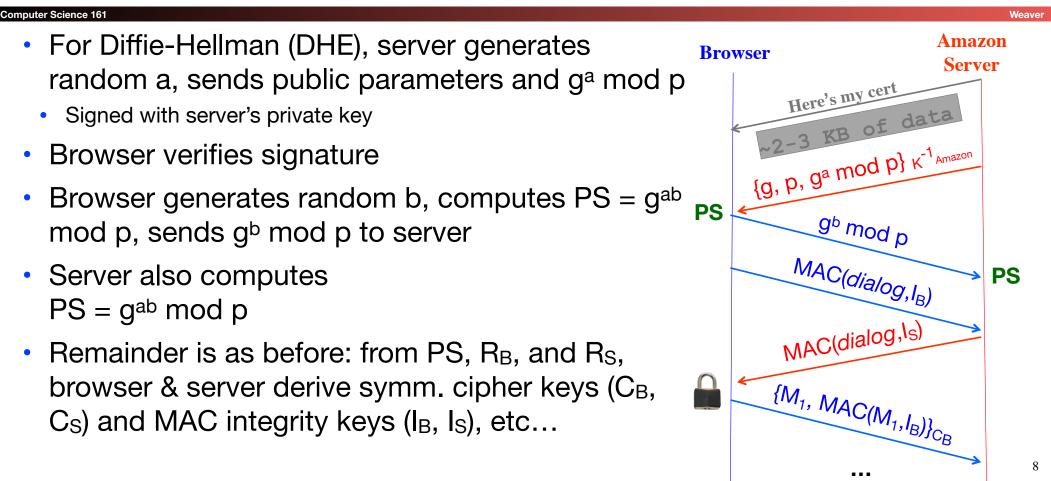
Computer Science 161


- #1: the data breach emails
 - UC should know what data was copied...
 - But it is a Metric Crapton of PII
 - And there are California Data Breach notification laws that will make this very expensive
- #2: the follow-on phishing emails
 - Using the data obtained to try to trick users into providing the necessary data to file a fraudulent tax return

Reminder: HTTPS Connection (SSL / TLS)


- Browser (client) connects via TCP to Amazon's HTTPS server
- Client picks 256-bit random number R_B, sends over list of crypto protocols it supports
- Server picks 256-bit random number R_s, selects protocols to use for this session
- Server sends over its certificate
 - (all of this is in the clear)

Computer Science 161


Client now validates cert

HTTPS Connection (SSL / TLS), cont.

Alternative: Ephemeral Key Exchange via Diffie-Hellman

Cipher Suite Negotiation

Computer Science 161

- Chrome's cipher-suite information
- Client sends to the server
- Server then choses which one it wants
- Chrome does a trick tho:
 - Concern that servers might not respond properly if they don't know all the cipher suites...
 - So Chrome adds a garbage one: GREASE_IS_THE_WORD_{RAND} to break all the web servers that don't follow the standard

🔒 htt	ps://www.l	nowsmyssl	.com		
SSL?	Home	About	API		

Learn More

Given Cipher Suites

The cipher suites your client said it supports, in the order it sent them, are:

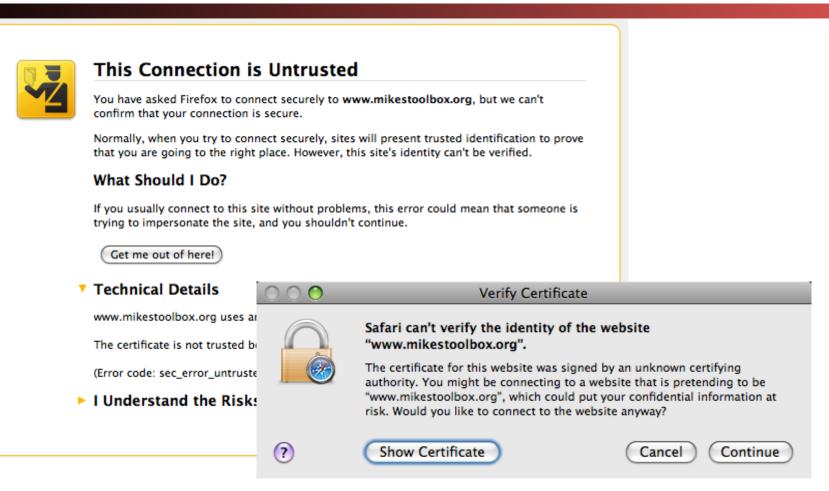
- TLS_GREASE_IS_THE_WORD_9A
- TLS_AES_128_GCM_SHA256
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
- TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA

Certificates

- Cert = signed statement about someone's public key
 - Note that a cert does not say anything about the identity of who gives you the cert
 - It simply states a given public key K_{Bob} belongs to Bob ...
 - ... and backs up this statement with a digital signature made using a different public/private key pair, say from Verisign (a "Certificate Authority")
- Bob then can prove his identity to you by you sending him something encrypted with K_{Bob} ...
 - ... which he then demonstrates he can read
- ... or by signing something he demonstrably uses
- Works provided you trust that you have a valid copy of Verisign's public key …
 - ... and you trust Verisign to use prudence when she signs other people's keys

Validating Amazon's Identity

Computer Science 161


- Browser compares domain name in cert w/ URL
 - Note: this provides an *end-to-end* property (as opposed to say a cert associated with an IP address)
- Browser accesses separate cert belonging to issuer
 - These are hardwired into the browser and trusted!
 - There could be a chain of these ...
- Browser applies issuer's public key to verify signature S, obtaining the hash of what the issuer signed
 - Compares with its own SHA-1 hash of Amazon's cert
- Assuming hashes match, now have high confidence it's indeed Amazon's public key …
 - assuming signatory is trustworthy, didn't lose private key, wasn't tricked into signing someone else's certificate, and that Amazon didn't lose their key either...

End-to-End \Rightarrow Powerful Protections

- Attacker runs a sniffer to capture our WiFi session?
 - But: encrypted communication is unreadable
 - No problem!
- DNS cache poisoning?
 - Client goes to wrong server
 - But: detects impersonation
 - No problem!
- Attacker hijacks our connection, injects new traffic
 - But: data receiver rejects it due to failed integrity check since all communication has a mac on it
 - No problem!
- Only thing a *full man-in-the-middle* attacker can do is inject RSTs, inject invalid packets, or drop packets: limited to a *denial of service*

Validating Amazon's Identity, cont.

- Browser retrieves cert belonging to the issuer
 - These are hardwired into the browser and trusted!
- But what if the browser can't find a cert for the issuer?

Validating Amazon's Identity, cont.

Computer Science 161

- Browser retrieves cert belonging to the issuer
 - These are hardwired into the browser and trusted!
- What if browser can't find a cert for the issuer?
- If it can't find the cert, then warns the user that site has not been verified
 - Can still proceed, just without authentication
- Q: Which end-to-end security properties do we lose if we incorrectly trust that the site is whom we think?
- A: All of them!
 - Goodbye confidentiality, integrity, authentication
 - Active attacker can read everything, modify, impersonate

SSL / TLS Limitations

Computer Science 161

- Properly used, SSL / TLS provides powerful end-to-end protections
- So why not use it for everything??

Issues:

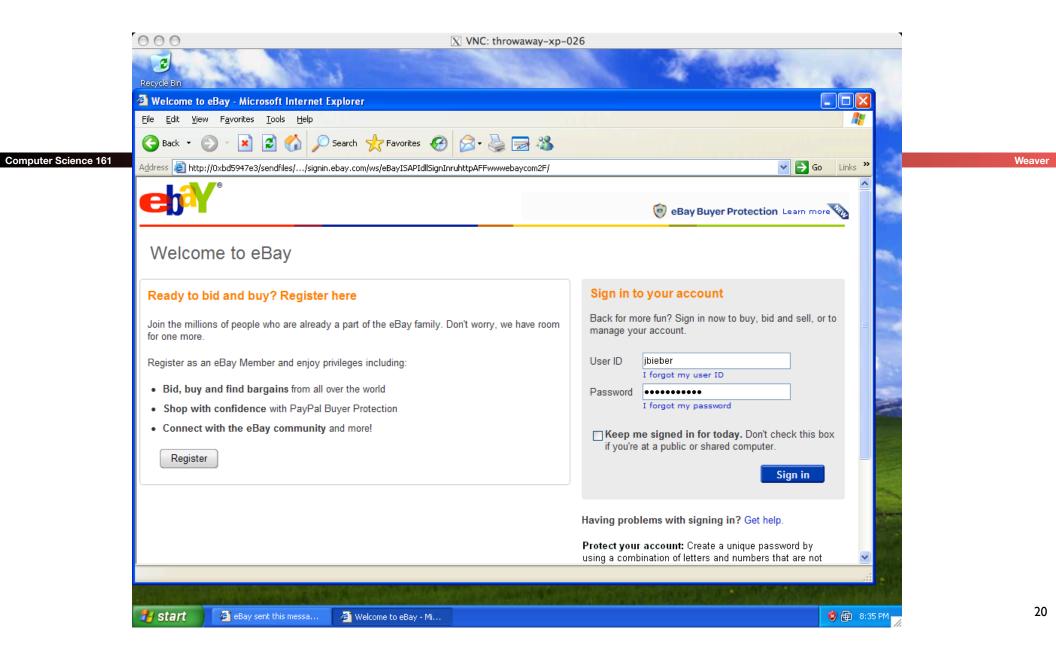
- Cost of public-key crypto (fairly minor)
 - Takes non-trivial CPU processing (but today a minor issue)
 - Note: symmetric key crypto on modern hardware is effectively free
- Hassle of buying/maintaining certs (fairly minor)
 - LetsEncrypt makes this almost automatic
- Integrating with other sites that don't use HTTPS
 - Namely, you can't: Non-HTTPS content won't load!
- Latency: extra round trips ⇒ 1st page slower to load

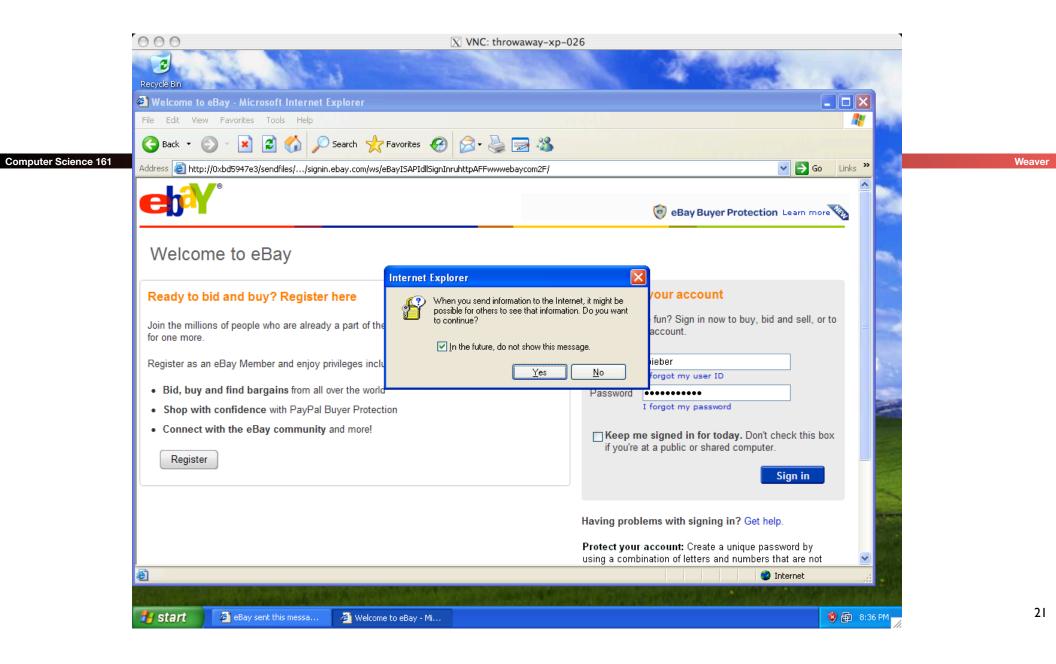
SSL / TLS Limitations, cont.

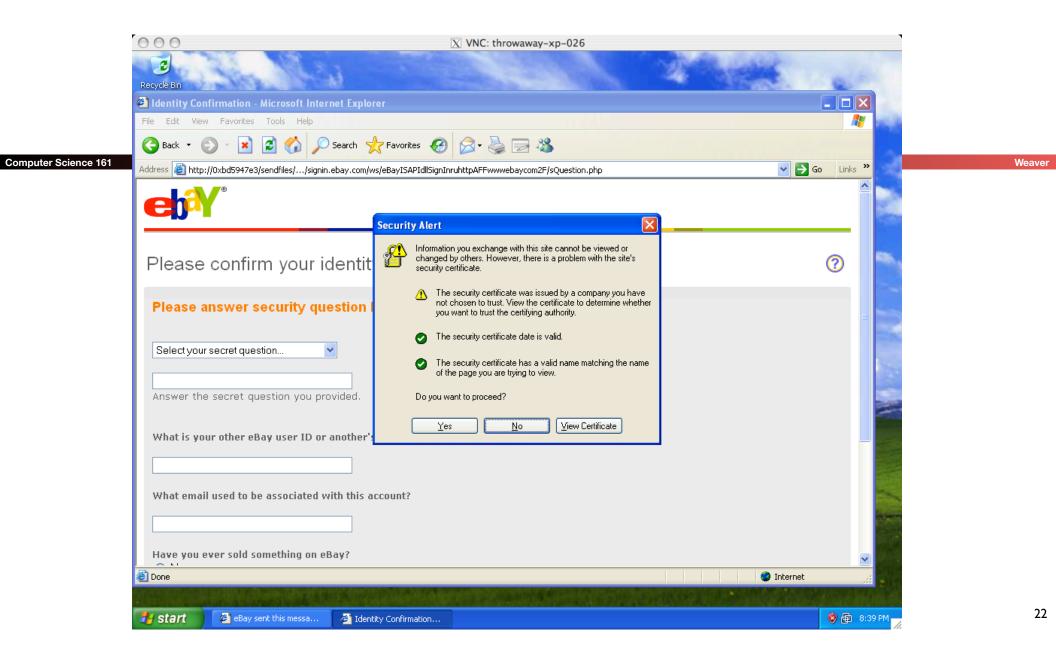
Computer Science 161

- Problems that SSL / TLS does not take care of ?
- Censorship:
- The censor sees the certificate in the clear, so knows who the client is talking to
- Optional Server Name Identification (SNI) is also sent in the clear
- The censor can then inject RSTs or block the communication
- TLS 1.3 supports encrypting the certificate & SNI (ESNI), but....
 - Censors are just blocking all ESNI connections.
- SQL injection/XSS/CSRF/server-side coding/logic flaws
- Vulnerabilities introduced by server inconsistencies

SSL/TLS Problem: Revocation

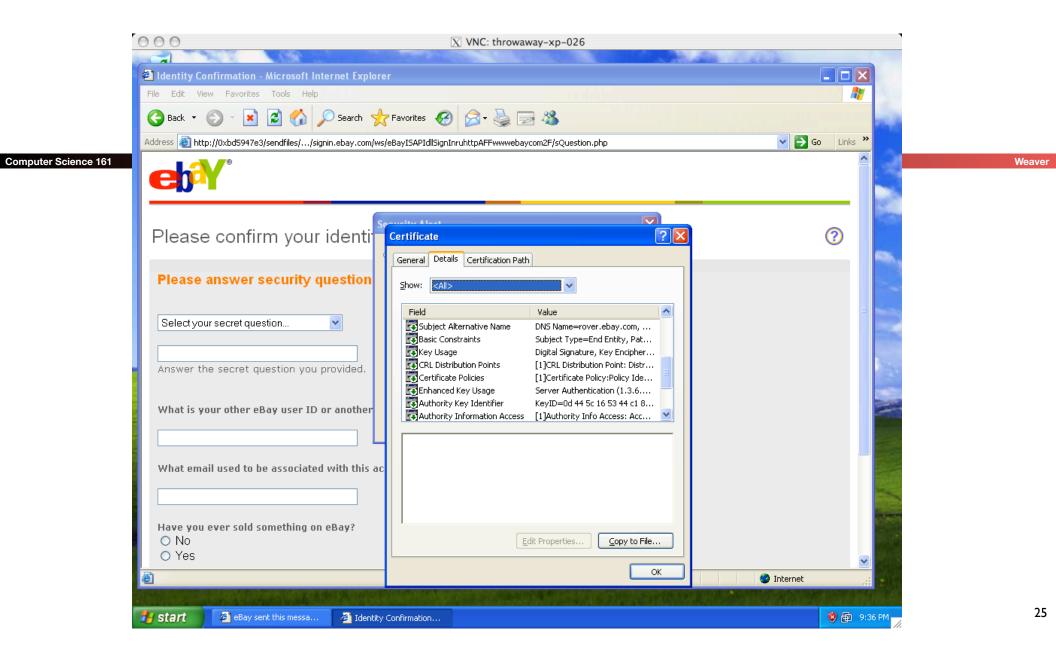

- A site screws up and an attacker steals the private key associated with a certificate, what now?
 - Certificates have a timestamp and are only good for a specified time
 - But this time is measured in years!?!?
- Two mitigations:
 - Certificate revocation lists
 - Your browser occasionally calls back to get a list of "no longer accepted" certificates
 - OSCP
 - Online Certificate Status Protocol: <u>https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol</u>


TLS/SSL Trust Issues


Computer Science 161

Weaver

• User has to make correct trust decisions ...



	000	X VNC: throwaway-xp-026		
	Identity Confirmation - Microsoft Internet Explore File Edit View Favorites Tools Help	er		
	G Back 🔹 🕥 - 💌 😰 🏠 🔎 Search 🦿	Favorites 🚱 🔗 🍓 📄 🖓		
	Address 🕘 http://0xbd5947e3/sendfiles//signin.ebay.com/w	slaPaulSADIdliSiapTayubtaAEEuuuuabaucam2E/cOunction.aba	Go Links »	
Computer Science 161		Certificate ?		Weaver
	Please confirm your identi	Certificate Information This certificate is intended for the following purpose(s): •Ensures the identity of a remote computer	0	
	Please answer security question			
	Select your secret question	* Refer to the certification authority's statement for details. Issued to: rover.ebay.com		
	Answer the secret question you provided.	Issued by: VeriSign Class 3 Secure Server CA - G3		
	What is your other eBay user ID or another	Valid from 10/22/2010 to 12/1/2012		
	What email used to be associated with this a	Install Certificate] Issuer Statement		
	Have you ever sold something on eBay? O No O Yes			
	ê		😵 Internet 🛒	
	🛃 eBay sent this messa 🗿 Identit	y Confirmation	🧐 📵 9:34 PM 🏑	23

	000	X VNC: throwaway-xp-026		
	Identity Confirmation - Microsoft Internet Explo			
	File Edit View Favorites Tools Help	rer		
	🚱 Back 🝷 🕥 - 💌 🛃 🏠 🔎 Search 🥱	🔀 Favorites 🧭 🍃 🍓 🔜 🦓	and the second	
	Address 🕘 http://0xbd5947e3/sendfiles//signin.ebay.com/v	rs/eBayISAPIdllSignInruhttpAFFwwwebaycom2F/sQuestion.php	Go Links »	
Computer Science 161				Weaver
	Please confirm your identi	Certificate ?X General Details Certification Path	3	
	Please answer security question			
	Select your secret question	Field Value Version V3 Serial number 4d ab c9 a6 0a 30 20 57 f9 23		
	Answer the secret question you provided.	Signature algorithm sha1R5A Issuer VerSign Class 3 Secure Server Valid from Friday, October 22, 2010 4:00 Valid to Saturday, December 01, 2012		
	What is your other eBay user ID or another	Valid to Saturday, December 01, 2012 Subject rover.ebay.com, Site Operatio Public key RSA (1024 Bits)		
	What email used to be associated with this a	c		
	Have you ever sold something on eBay? O No O Yes	Edit Properties		
		ОК	Internet	
	🛃 start 🗿 eBay sent this messa 🚳 Identii	y Confirmation	😻 🖶 9:36 PM 🚽	24

	000	X VNC: throwaway-xp-026		
	 Identity Confirmation - Microsoft Internet Explo 			
	File Edit View Favorites Tools Help			
	🔾 Back 🔹 🐑 👻 🛃 🏠 🔎 Search 😒	📩 Favorites 🚱 🔗 - 🌺 🔜 🖓		
	Address 🗃 http://0xbd5947e3/sendfiles//signin.ebay.com/	ws/eBayISAPIdllSignInruhttpAFFwwwebaycom2F/sQuestion.php	Go Links 🎽	
Computer Science 161				Weaver
	Please confirm your identi		0	
	Please answer security question	General Details Certification Path Certification path WeriSign VeriSign VeriSign Class 3 Secure Server CA - G3		
	Select your secret question	rover.ebay.com		
	Answer the secret question you provided. What is your other eBay user ID or another			
	What email used to be associated with this o	Certificate status:		
	Have you ever sold something on eBay? O No O Yes			
	E	ОК	 Internet 	
	🐉 start 🗿 eBay sent this messa 🗿 Ident	ity Confirmation	😒 🖶 9:37 PM 🦼	26

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

TLS/SSL Trust Issues, cont.

- Weave
- "Commercial certificate authorities protect you from anyone from whom they are unwilling to take money."
 - Matt Blaze, circa 2001
- So how many CAs do we have to worry about, anyway?

Click to unlock the	e System Roots keychain.			Q Search	1
Keychains login iCloud System System Roots	Certificate Certificate Certificate Set Root certificate authori Expires: Sunday, Decen This certificate is val	ty 1ber 31, 2028 at 3	59:59 PM Pacific Standard 1	Time	
	Name	Kind	Date Modified	Expires	Keychain
	AAA Certificate Services	certificate		Dec 31, 2028, 3:59:59 PM	System Roots
	Actalis Authentication Root CA	certificate		Sep 22, 2030, 4:22:02 AM	System Roots
	📷 AddTrust Class 1 CA Root	certificate		May 30, 2020, 3:38:31 AM	System Roots
	📷 AddTrust External CA Root	certificate		May 30, 2020, 3:48:38 AM	System Roots
	📷 Admin-Root-CA	certificate		Nov 9, 2021, 11:51:07 PM	System Roots
	📷 AffirmTrust Commercial	certificate		Dec 31, 2030, 6:06:06 AM	System Roots
Category	AffirmTrust Networking	certificate		Dec 31, 2030, 6:08:24 AM	System Roots
All Items	AffirmTrust Premium	certificate		Dec 31, 2040, 6:10:36 AM	System Roots
A. Passwords	AffirmTrust Premium ECC	certificate		Dec 31, 2040, 6:20:24 AM	System Roots
Secure Notes	📷 ANF Global Root CA	certificate		Jun 5, 2033, 10:45:38 AM	System Roots
	Apple Root CA	certificate		Feb 9, 2035, 1:40:36 PM	System Roots
My Certificates	📷 Apple Root CA - G2	certificate		Apr 30, 2039, 11:10:09 AM	System Roots
🔋 Keys	Apple Root CA - G3	certificate		Apr 30, 2039, 11:19:06 AM	System Roots
🛅 Certificates	📷 Apple Root Certificate Authority	certificate		Feb 9, 2025, 4:18:14 PM	System Roots
	ApplicationCA	certificate		Dec 12, 2017, 7:00:00 AM	System Roots
	ApplicationCA2 Root	certificate		Mar 12, 2033, 7:00:00 AM	System Roots
	Atos TrustedRoot 2011	certificate		Dec 31, 2030, 3:59:59 PM	System Roots
	📷 Autoridad denal CIF A62634068	certificate		Dec 31, 2030, 12:38:15 AM	System Roots
	📷 Autoridad deEstado Venezolano	certificate		Dec 17, 2030, 3:59:59 PM	System Roots

TLS/SSL Trust Issues

- "Commercial certificate authorities protect you from anyone from whom they are unwilling to take money."
 - Matt Blaze, circa 2001
- So how many CAs do we have to worry about, anyway?
- Of course, it's not just their greed that matters ...

News

Solo Iranian hacker takes credit for Comodo certificate attack

Security researchers split on whether 'ComodoHacker' is the real deal

By Gregg Keizer

Computerworld - A solo Iranian hacker on Saturday claimed responsibility for stealing multiple SSL certificates belonging to some of the Web's biggest sites, including Google, Microsoft, Skype and Yahoo.

Early reaction from security experts was mixed, with some believing the hacker's claim, while others were dubious.

CNET > News > InSecurity Complex > Fraudulent Google certificate points to Internet attack

Fraudulent Google certificate points to Internet attack

Is Iran behind a fraudulent Google.com digital certificate? The situation is similar to one that happened in March in which spoofed certificates were traced back to Iran.

by Elinor Mills | August 29, 2011 1:22 PM PDT

A Dutch company appears to have issued a digital certificate for Google.com to someone other than Google, who may be using it to try to re-direct traffic of users based in Iran.

Yesterday, someone reported on a Google support site that when attempting to log in to Gmail the browser issued a warning for the digital certificate used as proof that the site is legitimate, according to this thread on a Google support forum site.

	Certificate Information	
Th	is certificate is intended for the following purpose(s):	
	 Ensures the identity of a remote computer Proves your identity to a remote computer Protects e-mail messages Ensures software came from software publisher Protects software from alteration after publication Allows data to be signed with the current time 	4 III +
*R	efer to the certification authority's statement for details.	
~	Issued to: *.google.com	
	Issued by: DigiNotar Public CA 2025	
	Valid from 7/10/2011 to 7/9/2013	
	Issuer Statem	

This appears to be a fully valid cert using normal browser validation rules.

Only detected by Chrome due to its introduction of cert "pinning" – requiring that certs for certain domains must be signed by specific CAs rather than any generally trusted CA

October 31, 2012, 10:49AM

Final Report on DigiNotar Hack Shows Total Compromise of CA Servers

The attacker who penetrated the Dutch CA DigiNotar last year had complete control of all eight of the company's certificate-issuing servers during the operation and he may also have issued some rogue certificates that have not yet been identified. The final report from a

Evidence Suggests DigiNotar, Who Issued Fraudulent Google Certificate, Was Hacked *Years* Ago

from the diginot dept

The big news in the security world, obviously, is the fact that a **fraudulent Google certificate made its way out into the wild**, apparently targeting internet users in Iran. The Dutch company DigiNotar has put out a statement saying that **it discovered a breach** back on July 19th during a security audit, and that fraudulent certificates were generated for "several dozen" websites. The only one known to have gotten out into the wild is the Google one.

The DigiNotar Fallout

Computer Science 161

Weav

- The result was the "CA Death Sentence":
 - Web browsers removed it from the trusted root certificate store
- This happened again with "WoSign"
 - A Chinese CA
- WoSign would allow an interesting attack
 - If I controlled nweaver.github.com...
 - WoSign would allow me to create a certificate for *.github.com!?!?
 - And a bunch of other shady shenanigans

TLS/SSL Trust Issues

- "Commercial certificate authorities protect you from anyone from whom they are unwilling to take money."
 - Matt Blaze, circa 2001
- So how many CAs do we have to worry about, anyway?
- Of course, it's not just their greed that matters ...
- ... and it's not just their diligence & security that matters ...
- "A decade ago, I observed that commercial certificate authorities protect you from anyone from whom they are unwilling to take money. That turns out to be wrong; they don't even do that much." Matt Blaze, circa 2010

So the Modern Solution: Invoke Ronald Reagan, "Trust, but *Verify*"

Computer Science 161

- Weaver
- Static Certificate Pinning: The chrome browser has a list of certificates or certificate authorities that it trusts for given sites
 - Now creating a fake certificate requires attacking a *particular* CA

Transparency mechanisms:

- Public logs provided by certificate authorities
 - As a hash chain: We are actually serious so we don't call it a "blockchain"
 - Coupled with the server able to say "ONLY accept certificates from me that are from a CA implementing transparency"
- Browser extensions (EFF's TLS observatory)
- Backbone monitors (ICSI's TLS notary)

SSL/TLS Problem: Revocation

- A site screws up and an attacker steals the private key associated with a certificate, what now?
 - Certificates have a timestamp and are only good for a specified time
 - But this time is measured in years!?!?
- Two mitigations:
 - Certificate revocation lists
 - Your browser occasionally calls back to get a list of "no longer accepted" certificates
 - OSCP
 - Online Certificate Status Protocol: <u>https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol</u>

And Making It Cheap: LetsEncrypt...

Computer Science 161

Weaver

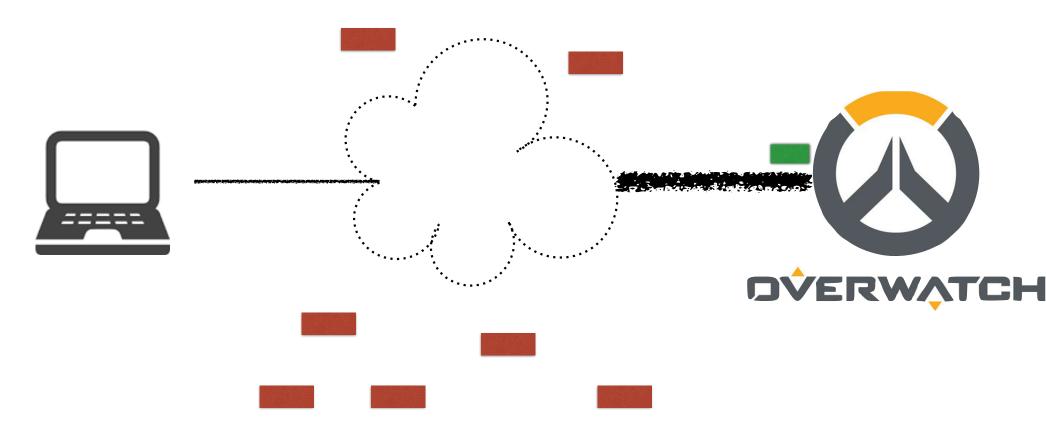
- Coupled to the depreciation of unencrypted HTTP...
 - Need to be able to have HTTPS be just about the same complexity...
- Idea: Make it easy to "prove" you own a web site:
 - Can you write an arbitrary cookie at an arbitrary location?
- Build *automated* infrastructure to do this
 - Script to create a private key
 - Generate a certificate signing request
 - PKI authority says "here's a file, put it on the server"
 - Script puts it on the server
 - PKI now returns certificate...
 - Signed with a limited duration so you *must* automate this process

And Now A Song: 50 Whys to Stop A Server...

- You are a bad guy...
 - And you want to stop some server from being *available*
- Why? You name it...
 - Because its hard for someone to frag you in an online game if you "boot" him from the network
 - Because people will pay up to stop the attack
 - Because it conveys a political message
 - Get paid for by others

The Easy DoS on a System: Resource Consumption...

Computer Science 161


Weaver

- Bad Dude has an account on your computer...
 - And wants to disrupt your work on Project 2...
- He runs this simple program:
 - while(1):
 - Write random junk to random files
 - (uses disk space, thrashes the disk)
 - Allocate a bunch of RAM and write to it
 - (uses memory)
 - fork()
 - (creates more processes to run)
- Only defense is some form of quota or limits: The system itself *must* enforce some isolation

The Network DOS

Computer Science 161

Weaver

DoS & Networks

- How could you DoS a target's Internet access?
 - Send a zillion packets at them
 - Internet lacks *isolation* between traffic of different users!
- What resources does attacker need to pull this off?
 - At least as much sending capacity (*bandwidth*) as the bottleneck link of the target's Internet connection
 - Attacker sends maximum-sized packets
 - Or: overwhelm the rate at which the bottleneck router can process packets
 - Attacker sends minimum-sized packets!
 - (in order to maximize the packet arrival rate)

Defending Against Network DoS

- Weave
- Suppose an attacker has access to a beefy system with highspeed Internet access (a "big pipe").
- They pump out packets towards the target at a very high rate.
- What might the target do to defend against the onslaught?
 - Install a network filter to discard any packets that arrive with attacker's IP address as their source
 - E.g., drop * 66.31.33.7:* -> *:*
 - Or it can leverage any other pattern in the flooding traffic that's not in benign traffic
 - Note, the filter needs to be *before* the bottleneck!
 - Attacker's IP address = means of identifying misbehaving user

Filtering Sounds Pretty Easy ...

- ... but DoS filters can be easily evaded:
- Make traffic appear as though it's from many hosts
 - Spoof the source address so it can't be used to filter
 - Just pick a random 32-bit number of each packet sent
 - How does a defender filter this?
 - They don't!
 - Best they can hope for is that operators around the world implement anti-spoofing mechanisms (today about 75% do)
- Use many hosts to send traffic rather than just one
 - Distributed Denial-of-Service = DDoS ("dee-doss")
 - Requires defender to install complex filters
 - How many hosts is "enough" for the attacker?
 - Today they are very cheap to acquire ... :-(

It's Not A "Level Playing Field"

- When defending resources from exhaustion, need to beware of asymmetries, where attackers can consume victim resources with little comparable effort
 - Makes DoS easier to launch
 - Defense costs much more than attack
- Particularly dangerous form of asymmetry: amplification
 - Attacker leverages system's own structure to pump up the load they induce on a resource

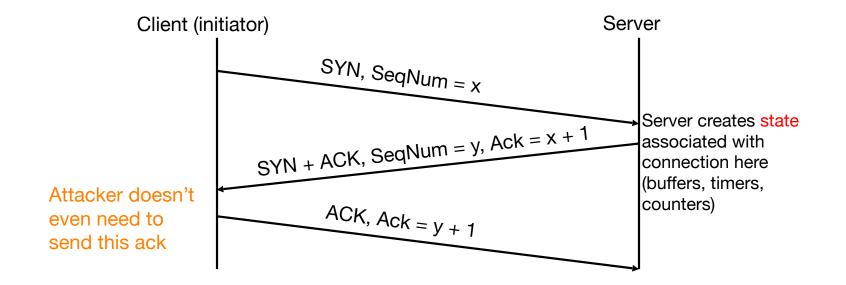
Amplification

Computer Science 161

- Example of amplification: DNS lookups
 - Reply is generally much bigger than request
 - Since it includes a copy of the reply, plus answers etc.
 - Attacker spoofs DNS request to a patsy DNS server, seemingly from the target
 - Small attacker packet yields large flooding packet
 - Doesn't increase # of packets, but total volume

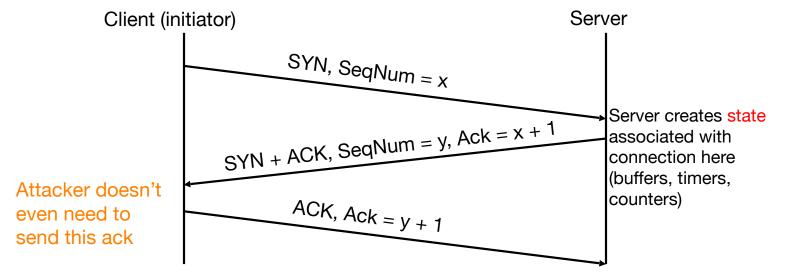
Note #1: these examples involve blind spoofing

- So for network-layer flooding, generally only works for UDP-based protocols (can't establish a TCP connection)
- But any single-packet UDP protocol where the response is bigger can be used for amplification!
- Note #2: victim doesn't see spoofed source addresses
 - Addresses are those of actual intermediary systems


Botnets

- If an attacker can control a *lot* of systems
 - They gain a huge amount of bandwidth
 - Modern DOS attacks approach 1 Terabit-per-second with direct connections
 - And it becomes very hard to filter them out
 - How do you specify 1M machines you want to ignore?
- You control these "bots" in a "botnet"
 - So you can issue commands that cause all these systems to do what you want
- This is what took down dyn DNS (and with it Twitter, Reddit, etc...) two years ago: A botnet composed primarily of compromised cameras and DVRs:
 - The Miraj botnet

Transport-Level Denial-of-Service


Computer Science 161

Recall TCP's 3-way connection establishment handshake
 Goal: agree on initial sequence numbers

Transport-Level Denial-of-Service

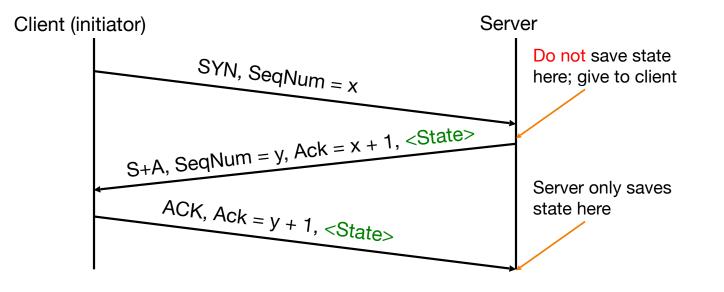
- Recall TCP's 3-way connection establishment handshake
 - Goal: agree on initial sequence numbers
- So a single SYN from an attacker suffices to force the server to spend some memory

TCP SYN Flooding

- Attacker targets memory rather than network capacity
- Every (unique) SYN that the attacker sends burdens the target
- What should target do when it has no more memory for a new connection?
- No good answer!
 - Refuse new connection?
 - Legit new users can't access service
 - Evict old connections to make room?
 - Legit old users get kicked off

TCP SYN Flooding Defenses

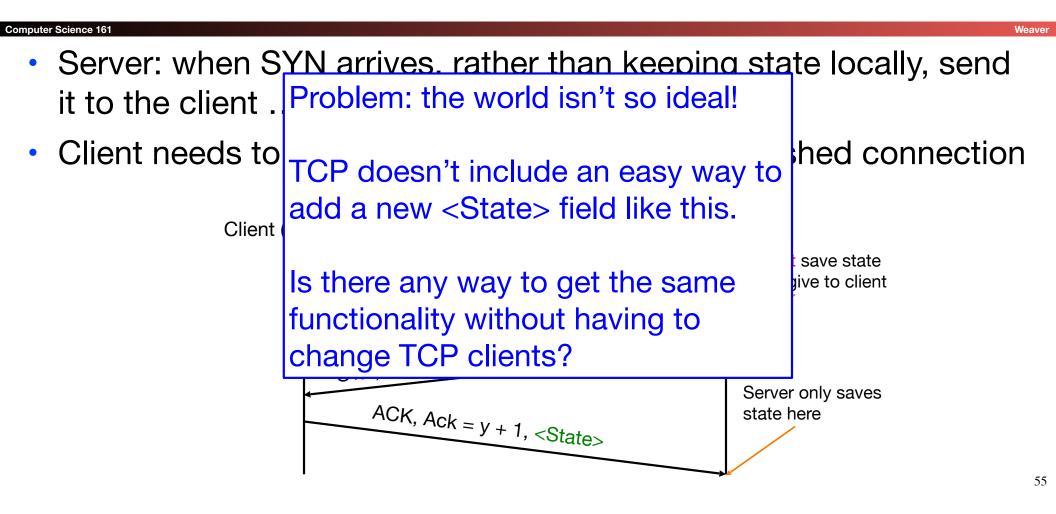
- How can the target defend itself?
- Approach #1: make sure they have tons of memory!
- How much is enough?
- Depends on resources attacker can bring to bear (threat model), which might be hard to know
- Back of the envelope:
 - If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker needs...
 - 100k packets/minute, or a bit more than 1,000 packets per second


TCP SYN Flooding Defenses

- Approach #2: identify bad actors & refuse their connections
 - Hard because only way to identify them is based on IP address
 - We can't for example require them to send a password because doing so requires we have an established connection!
 - For a public Internet service, who knows which addresses customers might come from?
 - Plus: attacker can spoof addresses since they don't need to complete TCP 3-way handshake
- Approach #3: don't keep state! ("SYN cookies"; only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized

Computer Science 161

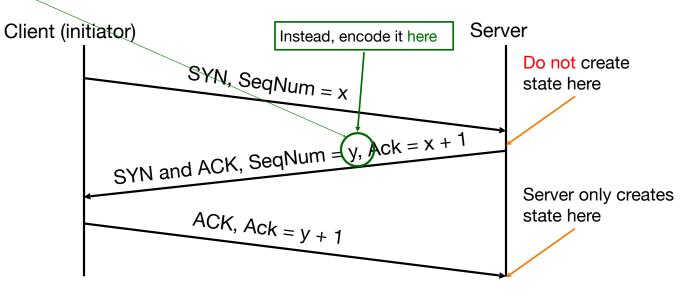

- Server: when SYN arrives, rather than keeping state locally, send it to the client ...
- Client needs to return the state in order to established connection

54

Weaver

SYN Flooding Defense: Idealized

Practical Defense: SYN Cookies


Computer Science 161

Weaver

 Server: when SYN arrives, encode connection state entirely within SYN-ACK's sequence # y

• (y) encoding of necessary state, using server secret

 When AGK of SYN-ACK arrives, server only creates state if value of y from it agrees w/ secret

SYN Cookies: Discussion

- Weave
- Illustrates general strategy: rather than holding state, encode it so that it is returned when needed
- For SYN cookies, attacker must complete
 3-way handshake in order to burden server
 - Can't use spoofed source addresses
- Note #1: strategy requires that you have enough bits to encode all the state
 - (This is just barely the case for SYN cookies)
 - You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence: And really, HMAC is the easiest way to do this!
- Note #2: if it's expensive to generate or check the cookie, then it's not a win

And Once Again, HMAC to the rescue...

- HMAC is a great way to force others to store state...
 - Create cookie: HMAC(k, data) ->
 - Check cookie: HMAC(k, data) ?=
- Allow you to force others to store all the data you want that you can then verify later
 - All you need to do is make sure that they know they need to send all the data back to you will the cookie...
 - And you need the cookie to be big enough

Application-Layer DoS

- Rather than exhausting network or memory resources, attacker can overwhelm a service's processing capacity
- There are many ways to do so, often at little expense to attacker compared to target (asymmetry)

Uncategorized

The Ethereum network is currently undergoing a DoS attack

Posted by Jeffrey Wilcke on ② September 22nd, 2016.

URGENT ALL MINERS: The network is under attack. The attack is a computational DDoS, ie. miners and nodes need to spend a very long time processing some blocks. This is due to the EXTCODESIZE opcode, which has a fairly low gasprice but which requires nodes to read state information from disk; the attack transactions are calling this opcode roughly 50,000 times per block. The consequence of this is that the network is greatly slowing down, but there is NO consensus failure

Algorithmic complexity attacks

- Attacker can try to trigger worst-case complexity of algorithms / data structures
- Example: You have a hash table. Expected time: O(1). Worst-case: O(n).
- Attacker picks inputs that cause hash collisions. Time per lookup: O(n). Total time to do n operations: O(n²).
- Solution? Use algorithms with good worst-case running time.
 - E.g., using **b** bits of HMAC ensures that $P[h_k(x)=h_k(y)] = .5^b$, so hash collisions will be rare.
 - If the attacker doesn't know the key that is

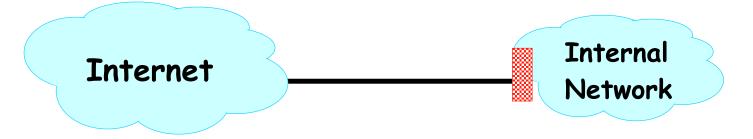
Application-Layer DoS

- Defenses against such attacks?
- Approach #1: Only let legit users issue expensive requests
 - Relies on being able to identify/authenticate them
 - Note: that this itself might be expensive!
- Approach #2: Force legit users to "burn" cash
 - This is what a captcha really is!
- Approach #3: massive over-provisioning (\$\$\$)
- Or pay for someone else who massively over provisions for everyone: A content delivery network

DoS Defense in General Terms

- Defending against program flaws requires:
 - Careful design and coding/testing/review
 - Consideration of behavior of defense mechanisms
 - E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒ denial-of-service
- Defending resources from exhaustion can be really hard. Requires:
 - Isolation and scheduling mechanisms
 - Keep adversary's consumption from affecting others
 - Reliable identification of different users
 - Or just a ton of \$\$\$\$

Controlling Networks ... On The Cheap


- Motivation: How do you harden a set of systems against external attack?
 - Key Observation:
 - The more network services your machines run, the greater the risk
 - Due to larger attack surface
- One approach: on each system, turn off unnecessary network services
 - But you have to know all the services that are running
 - And sometimes some trusted remote users still require access
- Plus key question of scaling
 - What happens when you have to secure 100s/1000s of systems?
 - Which may have different OSs, hardware & users ...
 - Which may in fact not all even be identified

Taming Management Complexity

Computer Science 161

Weave

- Possibly more scalable defense: Reduce risk by blocking in the network outsiders from having unwanted access your network services
 - Interpose a firewall the traffic to/from the outside must traverse
 - Chokepoint can cover thousands of hosts
 - Where in everyday experience do we see such chokepoints?

Selecting a Security Policy

- Firewall enforces an (access control) policy:
 - Who is allowed to talk to whom, accessing what service?
- Distinguish between inbound & outbound connections
 - Inbound: attempts by external users to connect to services on internal machines
 - Outbound: internal users to external services
 - Why? Because fits with a common threat model. There are thousands of internal users (and we've vetted them). There are billions of outsiders.
- Conceptually simple access control policy:
 - Permit inside users to connect to any service
 - External users restricted:
 - · Permit connections to services meant to be externally visible
 - Deny connections to services not meant for external access

How To Treat Traffic Not Mentioned in Policy?

Computer Science 161

- Default Allow: start off permitting external access to services
 - Shut them off as problems recognized
- Default Deny: start off permitting just a few known, wellsecured services
 - Add more when users complain (and mgt. approves)
- Pros & Cons?

In general, use Default Deny

- Flexibility vs. conservative design
- Flaws in Default Deny get noticed more quickly / less painfully

A Dumb Policy: Deny All Inbound connections...

- The simplest packet filters are *stateless*
 - They examine only individual packets to make a decision
- But even the simplest policy can be hard to implement
 - Deny All Inbound is the default policy on your home connection
- Allow:
 - Any outbound packet
 - Any inbound packet that is a reply... OOPS
- We can fake it for TCP with some ugly hacks
 - Allow all outbound TCP
 - Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set
 - May still allow an attacker to play some interesting games
- We can't even fake this for UDP!