
Computer Science 161 Weaver

 
Intrusion
Detection

1

Stolen from:
Daniel Schatz

@virturity

Computer Science 161 Weaver

Two additional complications

• NOERROR:

• The name exists but there is no record of that given type for that name

• For DNSSEC, prove that there is no ds record

• Says the subdomain doesn’t sign with DNSSEC

• NXDOMAIN:

• The name does not exist

• NSEC (Provable denial of existence), a record with just two fields

• Next domain name

• The next valid name in the domain

• Valid types for this name

• In a bitmap for efficiency

2

Computer Science 161 Weaver

NSEC in action

• Name is valid so NOERROR but no answers

• Single NSEC record for www.isc.org:

• No names exist between www.isc.org and  

www-dev.isc.org

• www.isc.org only has an A, AAAA, RRSIG, and NSEC record

3

nweaver% dig +dnssec TXT www.isc.org @8.8.8.8
...
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20430
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1
...
;; QUESTION SECTION:
;www.isc.org. IN TXT

;; AUTHORITY SECTION:
...
www.isc.org. 3600 IN NSEC www-dev.isc.org. A AAAA RRSIG NSEC
www.isc.org. 3600 IN RRSIG NSEC {RRSIG DATA}

Computer Science 161 Weaver

The Use of NSEC

• Proof that a name exists but no type exists for that name

• Critical for “This subdomain doesn’t support DNSSEC”: 

Return an NSEC record with the authority stating “There is no DS record”

• Proof that a name does not exist

• It falls between the two NSEC names

• Plus an NSEC saying “there is no wildcard”

• Provable Denial of Existence

• Allows trivial domain enumeration

• Attacker just starts at the beginning and walks through the NSEC records

• Some consider this bad...

4

Computer Science 161 Weaver

So NSEC3

• Rather than having the
name, use a hash of the
name

• Hash Algorithm

• Flags

• Iterations of the hash algorithm

• Salt (optional)

• The next name

• The RRTYPEs for this name

• Otherwise acts like NSEC, just

in a different space

5

nweaver% dig +dnssec TXT org @199.19.57.1
...
;; AUTHORITY SECTION:
...
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1 D399EAAB
 H9Q3IMI6H6CIJ4708DK5A3HMJLEIQ0PF NS SOA RRSIG DNSKEY NSEC3PARAM
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 {RRSIG}

Computer Science 161 Weaver

Comments on NSEC3

• It doesn't really prevent enumeration

• You get a hash-space enumeration instead, but since people chose reasonable

names...

• An attacker can just do a brute-force attack to find out what names exist and don't

exist after enumerating the hash space

• The salt is pointless!

• Since the whole name is hashed, foo.example.com and foo.example.org will

have different hashes anyway

• The only way to really prevent enumeration is to dynamically
sign values

• But that defeats the purpose of DNSSEC's offline signature generation

6

Computer Science 161 Weaver

So what can possibly go wrong?

• Screwups on the authority side...

• Too many ways to count...

• But comcast is keeping track of it: 

Follow @comcastdns on twitter

• The validator can’t access DNSSEC records

• The validator can’t process DNSSEC records correctly

7

Computer Science 161 Weaver

Authority Side Screwups...

• Its quite common to screw up

• Tell your registrar you support DNSSEC when you don't

• Took down HBO Go's launch for Comcast users and those using Google

Public DNS

• Rotate your key but present old signatures

• Forget that your signatures expire

8

Computer Science 161 Weaver

And The Recursive Resolver 
Must Not Be Trusted!
• Most deployments validate at the recursive resolver, not the

client

• Notably Google Public DNS and Comcast

• This provides very little practical security:

• The recursive resolver has proven to be the biggest threat in DNS

• And this doesn't protect you between the recursive resolver and your system

• But causes a lot of headaches

• Comcast or Google invariably get blamed when a zone screws up

• Fortunately this is getting less common...

9

Computer Science 161 Weaver

DNSSEC transport

• A validating client must be able to fetch the DNSSEC
related records

• It may be through the recursive resolver

• It may be by contacting arbitrary DNS servers on the Internet

• One of these two must work or the client can not validate
DNSSEC

• This acts to limit DNSSEC's real use: 
Signing other types such as cryptographic fingerprints (e.g. DANE)

10

Computer Science 161 Weaver

Probe the Root
To Check For DNSSEC Transport
• Can the client get DNSSEC data from the Internet?

• Probe every root with DO for:

• DS for .com with RRSIG

• DNSKEY for . with RRSIG

• NSEC for an invalid TLD with RRSIG

• Serves two purposes:

• Some networks have one or more bad root mirrors

• Notably one Chinese educational network has root mirrors for all but 3 that don’t

support DNSSEC

• If no information can be retrieved

• Proxy which strips out DNSSEC information and/or can’t handle DO

11

Computer Science 161 Weaver

DNSSEC Root Transport:
Results We've Seen In The Wild
• Bad news at Starbucks: Hotspot gateways often proxy all

DNS and can’t handle DO-enabled traffic

• And then have DNS resolvers that can't handle DNSSEC requests!

• Confirmed the Chinese educational network “Bad root
mirror” problem happened

• China had local root mirrors that didn't implement DNSSEC a few years back

12

Computer Science 161 Weaver

Implications of
“No DNSSEC at Starbucks”
• DNSSEC failure depends on the usage.

• For name->address bindings:

• If the recursive resolver practices proper port randomization:

• No problem. The same “attackers” who can manipulate your DNS could do anything they

want at the proxy that’s controlling your DNS traffic

• Else:

• Problem. Network is not secure

• For name->key bindings:

• Unless the resolver supports it directly, you are Out of Luck

• DNSSEC information must have an alternate channel if you want to use it to transmit keys

instead of just IPs
13

Computer Science 161 Weaver

In fact, my preferred DNSSEC policy
For Client Validation
• For name->address mappings

• Any existing APIs that don’t provide DNSSEC status

• If valid: use

• If invalid OR no complete DNSSEC chain:

• Begin an iterative fetch with the most precise DNSSEC-validated data

• Use the result without question

• For name->data mappings

• An API which returns DNSSEC status

• If valid: Use

• If invalid: Return DNSSEC failure status

• Up to the application

14

Computer Science 161 Weaver

And That's The Real 
Thing...
• DNSSEC in all its *emm* glory.

• OPT records to say "I want DNSSEC"

• RRSIG records are certificates

• DNSKEY records hold public keys

• DS records hold key fingerprints

• Used by the parent to tell the child's keys

• NSEC/NSEC3 records to prove that a name doesn't exist or
there is no record of that type

15

Computer Science 161 Weaver

Structure of 
FooCorp Web Services

16

Internet

Remote client

FooCorp’s 
border router

FooCorp 
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK 
 Output of bin/amazeme

Computer Science 161 Weaver

Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../” in requests

• Indicates attempts to get files that the web server shouldn't provide

17

Computer Science 161 Weaver

Internet

Remote client

FooCorp’s 
border router

FooCorp 
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy 
of incoming/outgoing 
HTTP traffic

8. 200 OK 
 Output of bin/amazeme

Structure of 
FooCorp Web Services

18

Computer Science 161 Weaver

Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../”

• Pros:

• No need to touch or trust end systems

• Can “bolt on” security

• Cheap: cover many systems w/ single monitor

• Cheap: centralized management

19

Computer Science 161 Weaver

How They Work:  
Scalable Network Intrusion Detection Systems

20

Tap

High Volume Filter

NIDS NodeNIDS NodeNIDS Node

Load Balancer

Is Not BitTorrent?

H(SIP, DIP)

Do this in OpenFlow:
100 Gbps install
at LBNL

Linear Scaling:
10x the money...
10x the bandwidth!
1u gives 1-5 Gbps

Computer Science 161 Weaver

Inside the NIDS

21

220

GET

GET HT TP /fu bar/ 1.1..

HTTP /b az/?id= 1f413 1.1...

mail.domain.target ESMTP Sendmail...

HTTP Request
URL = /fubar/
Host =
HTTP Request
URL = /baz/?id=...
ID = 1f413
Sendmail
From = someguy@...
To = otherguy@...

Computer Science 161 Weaver

Network Intrusion Detection (NIDS)

• NIDS has a table of all active connections, 
and maintains state for each

• e.g., has it seen a partial match of /etc/passwd?

• What do you do when you see a new packet not associated
with any known connection?

• Create a new connection: when NIDS starts it doesn’t know what
connections might be existing

• New hotness: Network monitoring

• Goal is not to detect attacks but just to understand everything.

22

Computer Science 161 Weaver

Evasion

• What should NIDS do if it sees a RST packet?

• Assume RST will be received?

• Assume RST won’t be received?

• Other (please specify)

23

NIDS

/etc/p

RST

Computer Science 161 Weaver

Evasion

• What should NIDS do if it sees this? 

• Alert – it’s an attack

• No alert – it’s all good

• Other (please specify)

24

NIDS

/%65%74%63/%70%61%73%73%77%64

Computer Science 161 Weaver

Evasion

• Evasion attacks arise when you have “double parsing”  

• Inconsistency - interpreted differently between the monitor
and the end system 

• Ambiguity - information needed to interpret correctly is
missing

25

Computer Science 161 Weaver

Evasion Attacks (High-Level View)

• Some evasions reflect incomplete analysis

• In our FooCorp example, hex escapes or “..////.//../” alias

• In principle, can deal with these with implementation care (make sure we fully

understand the spec)

• Of course, in practice things inevitably fall through the cracks!

• Some are due to imperfect observability

• For instance, if what NIDS sees doesn’t exactly match what arrives at the

destination

• EG, two copies of the "same" packet, which are actually different and with

different TTLs

26

Computer Science 161 Weaver

Network-Based Detection

• Issues:

• Scan for “/etc/passwd”?

• What about other sensitive files?

• Scan for “../../”?

• Sometimes seen in legit. requests (= false positive)

• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

• Okay, need to do full HTTP parsing

• What about “..///.///..////”?

• Okay, need to understand Unix filename semantics too!

• What if it’s HTTPS and not HTTP?

• Need access to decrypted text / session key – yuck!

27

Computer Science 161 Weaver

Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

28

Computer Science 161 Weaver

Internet

Remote client

FooCorp’s 
border router

FooCorp 
Servers

Front-end web server

4. amazeme.exe?
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation
added inside here

6. Output of bin/amazeme sent back

Structure of 
FooCorp Web Services

29

Computer Science 161 Weaver

Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

• Pros:

• No problems with HTTP complexities like %-escapes

• Works for encrypted HTTPS!

• Issues:

• Have to add code to each (possibly different) web server

• And that effort only helps with detecting web server attacks

• Still have to consider Unix filename semantics (“..////.//”)

• Still have to consider other sensitive files

30

Computer Science 161 Weaver

Log Analysis

• Approach #3: each night, script runs to analyze log files
generated by web servers

• Again scan ?arguments sent to back-end programs

31

Computer Science 161 Weaver

Internet

Remote client

FooCorp’s 
border router

FooCorp 
Servers

Front-end web server

bin/amazeme -p xxx

Run Nightly Analysis 
Of Logs Here

Structure of 
FooCorp Web Services

32

Computer Science 161 Weaver

Log Analysis: 
Aka "Log It All and let Splunk Sort It Out"
• Approach #3: each night, script runs to analyze log files generated by web

servers

• Again scan ?arguments sent to back-end programs

• Pros:

• Cheap: web servers generally already have such logging facilities built into them

• No problems like %-escapes, encrypted HTTPS

• Issues:

• Again must consider filename tricks, other sensitive files

• Can’t block attacks & prevent from happening

• Detection delayed, so attack damage may compound

• If the attack is a compromise, then malware might be able to alter the logs before they’re analyzed

• (Not a problem for directory traversal information leak example)

• Also can be mitigated by using a separate log server

33

Computer Science 161 Weaver

System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend
processes

• Look for access to /etc/passwd

34

Computer Science 161 Weaver

Internet

Remote client

FooCorp’s 
border router

FooCorp 
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of
system calls accessing files

Structure of 
FooCorp Web Services

35

Computer Science 161 Weaver

System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend processes

• Look for access to /etc/passwd

• Pros:

• No issues with any HTTP complexities

• May avoid issues with filename tricks

• Attack only leads to an “alert” if attack succeeded

• Sensitive file was indeed accessed

• Issues:

• Maybe other processes make legit accesses to the sensitive files (false positives)

• Maybe we’d like to detect attempts even if they fail?

• “situational awareness”

36

Computer Science 161 Weaver

Detection Accuracy

• Two types of detector errors:

• False positive (FP): alerting about a problem when in fact there was no problem

• False negative (FN): failing to alert about a problem when in fact there was a problem

• Detector accuracy is often assessed in terms of rates at which
these occur:

• Define Ι to be the event of an instance of intrusive behavior occurring (something we

want to detect)

• Define Α to be the event of detector generating alarm

• Define:

• False positive rate = P[Α|¬Ι]

• False negative rate = P[¬Α| Ι]

37

Computer Science 161 Weaver

Perfect Detection

• Is it possible to build a detector for our example with a false
negative rate of 0%?

• Algorithm to detect bad URLs with 0% FN rate:

void my_detector_that_never_misses(char *URL)
{
 printf("yep, it's an attack!\n");
}

• In fact, it works for detecting any bad activity with no false negatives! Woo-hoo!

• Wow, so what about a detector for bad URLs that has NO
FALSE POSITIVES?!

• printf("nope, not an attack\n");

38

Computer Science 161 Weaver

Detection Tradeoffs

• The art of a good detector is achieving an effective balance
between FPs and FNs

• Suppose our detector has an FP rate of 0.1% and an FN
rate of 2%. Is it good enough? Which is better, a very low
FP rate or a very low FN rate?

• Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and consuming hour of their time; FN

might lead to $10K cleaning up compromised system that was missed

• … but also critically depends on the rate at which actual attacks occur in

your environment
39

Computer Science 161 Weaver

Base Rate Fallacy

• Suppose our detector has a FP rate of 0.1% (!) 
and a FN rate of 2% (not bad!)

• Scenario #1: our server receives 1,000 URLs/day, and 5 of them are attacks

• Expected # FPs each day = 0.1% * 995 ≈ 1

• Expected # FNs each day = 2% * 5 = 0.1 (< 1/week)

• Pretty good!

• Scenario #2: our server receives 10,000,000 URLs/day, and 5 of them are
attacks

• Expected # FPs each day ≈ 10,000 :-(

• Nothing changed about the detector; only our environment changed

• Accurate detection very challenging when base rate of activity we want to detect is quite low

40

Computer Science 161 Weaver

Composing Detectors: 
There Is No Free Lunch
• "Hey, what if we take two (bad) detectors and combine

them?"

• Can we turn that into a good detector?

• Note: Assumes the detectors are independent

• Parallel composition: Either detector triggers an alert

• Reduces false negative rate (either one alerts works)

• Increases false positive rate!

• Series composition: both detectors must trigger for an alert

• Reduces false positive rate (since both must false positive)

• Increases false negative rate!

41

Computer Science 161 Weaver

Styles of Detection: Signature-Based

• Idea: look for activity that matches the structure of a known attack

• Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET 139
flow:to_server,established
content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs

42

Computer Science 161 Weaver

Signature-Based Detection

• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?

• Conceptually simple

• Takes care of known attacks (of which there are zillions)

• Easy to share signatures, build up libraries

• What’s problematic about this approach?

• Blind to novel attacks

• Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions

• Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates lots of false positives)

43

Computer Science 161 Weaver

Vulnerability Signatures

• Idea: don’t match on known attacks, match on known problems

• Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msg:"Web-IIS ISAPI .ida attempt"
reference:bugtraq,1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

• That is, match URIs that invoke *.ida?*, have more than 239 bytes of payload, and
have ACK set (maybe others too)

• This example detects any* attempt to exploit a particular buffer overflow in IIS web
servers

• Used by the “Code Red” worm

• (Note, signature is not quite complete: also worked for *.idb?*)

44

Computer Science 161 Weaver

Asside: Why The Covid Vaccines 
Are So Good!
• The COVID vaccines are basically training your body to

respond to a vulnerability signature!

• Not recognize any random part of the virus...

• But the key the virus uses to invade cells!

• So if the virus mutates to avoid detection...

• It is likely to also be less effective at invading your cells

• Plus a "head start" seems to be enough

• These vaccines are basically 100% effective at turning COVID into a

Common Cold even if you do get infected
45

Computer Science 161 Weaver

Styles of Detection: Anomaly-Based

• Idea: attacks look peculiar.

• High-level approach: develop a model of normal behavior (say

based on analyzing historical logs). Flag activity that deviates
from it.

• FooCorp example: maybe look at distribution of characters in URL
parameters, learn that some are rare and/or don’t occur repeatedly

• If we happen to learn that ‘.’s have this property, then could detect the attack even

without knowing it exists

• Big benefit: potential detection of a wide range of attacks,
including novel ones

46

Computer Science 161 Weaver

Anomaly Detection Problems

• Can fail to detect known attacks

• Can fail to detect novel attacks, if don’t happen to look peculiar

along measured dimension

• What happens if the historical data you train on includes attacks?

• Base Rate Fallacy particularly acute: if prevalence of attacks is

low, then you’re more often going to see benign outliers

• High FP rate

• OR: require such a stringent deviation from “normal” that most attacks are missed (high FN

rate)

• Proves great subject for academic papers but not generally used
47

Computer Science 161 Weaver

Specification-Based Detection

• Idea: don’t learn what’s normal; specify what’s allowed

• FooCorp example: decide that all URL parameters sent to

foocorp.com servers must have at most one ‘/’ in them

• Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?

• Can detect novel attacks

• Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematic about this approach?

• Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)

48

Computer Science 161 Weaver

Styles of Detection: Behavioral

• Idea: don’t look for attacks, look for evidence of compromise

• FooCorp example: inspect all output web traffic for any lines that

match a passwd file

• Example for monitoring user shell keystrokes: 
	unset HISTFILE

• Example for catching code injection: look at sequences of system
calls, flag any that prior analysis of a given program shows it can’t
generate

• E.g., observe process executing read(), open(), write(), fork(), exec() …

• … but there’s no code path in the (original) program that calls those in exactly that order!

49

Computer Science 161 Weaver

Behavioral-Based Detection

• What’s nice about this approach?

• Can detect a wide range of novel attacks

• Can have low false positives

• Depending on degree to which behavior is distinctive

• E.g., for system call profiling: no false positives!

• Can be cheap to implement

• E.g., system call profiling can be mechanized

• What’s problematic about this approach?

• Post facto detection: discovers that you definitely have a problem, w/ no opportunity to prevent it

• Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”

• How could they evade system call profiling?

• Mimicry: adapt injected code to comply w/ allowed call sequences (and can be automated!)

50

Computer Science 161 Weaver

Summary of Evasion Issues

• Evasions arise from uncertainty (or incompleteness) because detector must
infer behavior/processing it can’t directly observe

• A general problem any time detection separate from potential target

• One general strategy: impose canonical form (“normalize”)

• E.g., rewrite URLs to expand/remove hex escapes

• E.g., enforce blog comments to only have certain HTML tags

• Another strategy: analyze all possible interpretations rather than assuming one

• E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …

• Another strategy: Flag potential evasions

• So the presence of an ambiguity is at least noted

• Another strategy: fix the basic observation problem

• E.g., monitor directly at end systems

51

Computer Science 161 Weaver

Inside a Modern HIDS (“AV”)

• URL/Web access blocking:

• Prevent users from going to known bad locations

• Protocol scanning of network traffic (esp. HTTP)

• Detect & block known attacks

• Detect & block known malware communication

• Payload scanning

• Detect & block known malware

• (Auto-update of signatures for these)

• Cloud queries regarding reputation

• Who else has run this executable and with what results?

• What’s known about the remote host / domain / URL?

52

Computer Science 161 Weaver

Inside a Modern HIDS

• Sandbox execution

• Run selected executables in constrained/monitored environment

• Analyze:

• System calls

• Changes to files / registry

• Self-modifying code (polymorphism/metamorphism)

• File scanning

• Look for malware that installs itself on disk

• Memory scanning

• Look for malware that never appears on disk

• Runtime analysis

• Apply heuristics/signatures to execution behavior

53

Computer Science 161 Weaver

Inside a Modern NIDS

• Deployment inside network as well as at border

• Greater visibility, including tracking of user identity

• Full protocol analysis

• Including extraction of complex embedded objects

• In some systems, 100s of known protocols

• Signature analysis (also behavioral)

• Known attacks, malware communication, blacklisted hosts/domains

• Known malicious payloads

• Sequences/patterns of activity

• Shadow execution (e.g., Flash, PDF programs)

• Extensive logging (in support of forensics)

• Auto-update of signatures, blacklists

54

Computer Science 161 Weaver

NIDS vs. HIDS

• NIDS benefits:

• Can cover a lot of systems with single deployment

• Much simpler management

• Easy to “bolt on” / no need to touch end systems

• Doesn’t consume production resources on end systems

• Harder for an attacker to subvert / less to trust

• HIDS benefits:

• Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks

• Harder to evade

• Can protect against non-network threats

• Visibility into encrypted activity

• Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets

55

Computer Science 161 Weaver

Key Concepts for Detection

• Signature-based vs anomaly detection 
(blacklisting vs whitelisting)

• Evasion attacks

• Evaluation metrics: False positive rate, false negative rate

• Base rate problem

56

Computer Science 161 Weaver

Detection vs. Blocking

• If we can detect attacks, how about blocking them?

• Issues:

• Not a possibility for retrospective analysis (e.g., nightly job that looks at logs)

• Quite hard for detector that’s not in the data path

• E.g. How can NIDS that passively monitors traffic block attacks?

• Change firewall rules dynamically; forge RST packets

• And still there’s a race regarding what attacker does before block

• False positives get more expensive

• You don’t just bug an operator, you damage production activity

• Today’s technology/products pretty much all offer blocking

• Intrusion prevention systems (IPS - “eye-pee-ess”)

57

Computer Science 161 Weaver

Can We Build An IPS 
That Blocks All Attacks?

58

Computer Science 161 Weaver

An Alternative Paradigm

• Idea: rather than detect attacks, launch them yourself!

• Vulnerability scanning: use a tool to probe your own systems with a wide range of

attacks, fix any that succeed

• Pros?

• Accurate: if your scanning tool is good, it finds real problems

• Proactive: can prevent future misuse

• Intelligence: can ignore IDS alarms that you know can’t succeed

• Issues?

• Can take a lot of work

• Not so helpful for systems you can’t modify

• Dangerous for disruptive attacks

• And you might not know which these are …

• In practice, this approach is prudent and widely used today

• Good complement to also running an IDS

59

Computer Science 161 Weaver

Styles of Detection: Honeypots

• Idea: deploy a sacrificial system that has no operational purpose

• Any access is by definition not authorized …

• … and thus an intruder

• (or some sort of mistake)

• Provides opportunity to:

• Identify intruders

• Study what they’re up to

• Divert them from legitimate targets

60

Computer Science 161 Weaver

Honeypots

• Real-world example: some hospitals enter fake records with celebrity names …

• … to entrap staff who don’t respect confidentiality

• What’s nice about this approach?

• Can detect all sorts of new threats

• What’s problematic about this approach?

• Can be difficult to lure the attacker

• Can be a lot of work to build a convincing environment

• Note: both of these issues matter less when deploying honeypots for automated attacks

• Because these have more predictable targeting & env. needs

• E.g. “spamtraps”: fake email addresses to catching spambots

• A great honeypot: An unsecured Bitcoin wallet...

• When your bitcoins get stolen, you know you got compromised!

61

Computer Science 161 Weaver

Forensics

• Vital complement to detecting attacks: figuring out what
happened in wake of successful attack

• Doing so requires access to rich/extensive logs

• Plus tools for analyzing/understanding them

• It also entails looking for patterns and understanding the
implications of structure seen in activity

• An iterative process (“peeling the onion”)

62

Computer Science 161 Weaver

Other Attacks on IDSs

• DoS: exhaust its memory

• IDS has to track ongoing activity

• Attacker generates lots of different forms of activity, consumes all of its memory

• E.g., spoof zillions of distinct TCP SYNs …

• … so IDS must hold zillions of connection records

• DoS: exhaust its processing

• One sneaky form: algorithmic complexity attacks

• E.g., if IDS uses a predictable hash function to manage connection records …

• … then generate series of hash collisions

• Code injection (!)

• After all, NIDS analyzers take as input network traffic under attacker’s control …

• One of the CS194 projects will be on this topic...

63

Computer Science 161 Weaver

And, of course,

our monitors have bugs...

64

