Weaver CS 161

Spring 2021 Computer Security Project 1

Due: Friday, February 19, 2020, 11:59pm PT
Most recent update: Monday, February 9, 2021

In this project, you will be exploiting a series of vulnerable programs on a virtual machine.
You may work in teams of 1 or 2 students.

This project has a story component . Reading it is not necessary for project completion.

The world dreams once again. The buildup of propulsion, material and computing
technology reaches a critical point and rekindles the fervor of space exploration! The
world looks up to the sky and dares to explore the unknown, extend our reaches and
expand our understanding.

You are part of the ambitious Jupiter exploration program at the Caltopia Space Agency.
However, the project is plagued with problems before it even begins. The reckless orbital
launches by various space programs over decades has filled lower earth orbit with space
debris, preventing the massive Jupiter-bound ships from passing through. CSA must
first pave the way to space by deorbiting old unused satellites.

The CSA can easily deorbit their own old satellites, but the same cannot be said for
satellites launched by the former Gobian Union. The CSA does not have the creden-
tials to assume control, and the agency responsible for these satellites no longer exists.
Luckily for you, these old satellites employ the old, insecure technology of a bygone era.
Your job is to hack into the decommissioned satellites and remove them from orbit.

The agency has faith that you can help forge a new path to Jupiter and beyond.

===~ STARS T0 ORBIT!

SPICA 1977

BOSIK ZVEZDA
UNION COSMONAUT

GOBIAN UNION SPACE ASSOCIATION

Getting Started

There are two options to set up a virtual machine for the project. There is no difference which
option you choose. Option 2 is easier to set up, but requires a stable Internet connection. If
you run into any issues with either option, please check the FAQ on Piazza first.

Option l: Local Setup (VirtualBox)

This option is recommended if you do not have a stable Internet connection.

To work with this option, you will need to install VirtualBox and an SSH client (on Windows,
use Putty or Git Bash). On Linux and Mac, you can install these programs from your package
manager (e.g., apt or brew).

Open VirtualBox, and download and import the VM image (pwnable-sp21.ova) via File ->
Import Applicance.

You can now start the VM, in which you will run the vulnerable programs and their exploits.
You can SSH into the VM by running ssh -p 16121 USERNAME@127.0.0.1 on your local
machine, replacing USERNAME depending on the question.

To make sure the VM works, run ssh -p 16121 customizer@127.0.0.1. If you see a
prompt for customizer@127.0.0.1’s password:, you are ready to start the project.

Option 2: Online Setup (the Hive)

To work with this option, you will need an EECS instructional account (you should have set
one up in HW1, Q2.2).

To start the VM, execute the following command in your terminal:
$ ssh -t cs161-XXX@hiveYY.cs.berkeley.edu \"csl161/projl/start

Replace XXX with the last three letters of your instructional account, and YY with the number
of a hive machine (1-20). For best experience, use Hivemind to select a hive machine with
low load. (Machines 21-30 are reserved for CS61C, so please only use machines 1-20.)

If everything works successfully, a lot of output will scroll by (from the virtual machine
booting up). If you see a pwnable login: prompt, you are ready to start the project.

Note: Normally when you are done with the VM, you can simply close the terminal window.
Some events might cause the VM to become inaccessible. In this case you can force close
the VM by running the following command on your local computer:

$ ssh cs161-XXX@hiveYY.cs.berkeley.edu \"cs161/projl/stop

Project 1 Page 2 of 16 CS 161 — Spring 2021

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://git-scm.com/download/win
https://drive.google.com/file/d/1eJgqKHICGIDvSgGy1C0E0oyyX0j4IBls
https://hivemind.eecs.berkeley.edu/

Customizing

Caltopian intelligence secured a copy of Gobian Union’s Satellite Provisioning And Con-
trol Environment [SPACE] during the disarray following their fall. First, register your
account with SPACE so you can log into satellites from the comfort of your home planet.

Regardless of which setup you have used, you will now need to customize the virtual machine.
Log in to the virtual machine as the user customizer with the password customizer (same
username and password), and follow the subsequent prompts.

Note that customization requires your partner’s Cal ID. Both you and your partner
should customize your VM using the same IDs (the order of the IDs does not matter).

If you want to do some initial exploration by yourself before you've finalized your team, you
can start off using just your ID for this customization step. Once you have your team in
place, you’ll need to start again with a clean VM image customized as mentioned here. Any
exploits you've developed for your private VM image will require porting (re-determination
of the addresses to use in them). This should go quickly once you understand the exploit.

If the IDs used by the VM are incorrect, you and your partner may fail the autograder tests.
Make sure that you include your EXACT ID number.

Once you have finished customizing your virtual machine, you will receive the username and
password for the first question.

Project 1 Page 3 of 16 CS 161 — Spring 2021

Question 1 Remus (Launched 1975) (Password: ilearned) (10 points)

Orion class satellites were some of the first to be launched into orbit. Once Gobian
Union’s proudest achievement, these satellites are now disused and ready to be
deorbited. CSA engineers recently deorbited the Orion-class satellite Romulus and
prepared a manual with instructions for hacking into the satellite.

Your job is to deorbit its sister satellite, Remus, using the provided manual. Old
satellites often have messages from the past in their README, so once you hack
into Remus, why not check out what the cosmonauts of the past had to say?

To familiarize you with the workflow of this project, we will walk you through the exploit
for the first question. This part has a lot of reading, but please read everything carefully
to minimize silly mistakes in later questions!

Log into the remus account on the VM using the password you obtained in the cus-
tomization step above.

Starter files

1s to see the provided files. Each user (one per question) will have the following files:
e A vulnerable C program. In this question it is orbit.c.
e An executable binary of the C program. In this question it is orbit.

e exploit: A scaffolding script that takes your malicious input and feeds it to the
vulnerable program.

e debug-exploit: A debugging version of the scaffolding script that takes your ma-
licious input and starts GDB.

e README: The file you want to read.

e egg: Your malicious input to the program. You will need to create this file yourself.

Your task

Try reading the contents of the README by using the cat command, which prints out the
contents of a file: cat README. Notice that you do not have permission to read the file.

The file permissions make each README accessible only to the next user. Luckily, each
user has a compiled executable of the vulnerable C code that is owned by the next user.
In other words, the vulnerable program will run with the next user’s effective privileges.
Therefore, exploiting the C program will allow you to assume the next user’s permissions
and see the contents of README.

Your goal for each question is to provide a malicious input to the vulnerable C program in
order to access the restricted README file, where you will find the username and password
for the next question.

Project 1 Page 4 of 16 CS 161 — Spring 2021

Writing the Exploit

First, take a look at orbit.c and notice that it takes in user input. The scaffolding is
designed so that whatever the egg script prints will be used as input to orbit.

Your goal is to create an input that injects the following shellcode®:

shellcode = \
"\x6a\x32\x58\xcd\x80\x89\xc3\x89\xc1\x6a" + \
"\x47\x58\xcd\x80\x31\xc0\x50\x68\x2f\x2f" + \
"\x73\x68\x68\x2f \x62\x69\x6e\x54\x5b\x50" + \
"\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

Note: You will use this same shellcode for Questions 1, 2, 4, and 6.

A correct exploit will launch a new shell waiting for input - you can verify that your
exploit works by checking that cat README displays the next password.

To help you out, we have provided an example write-up on the next two pages. You will
need to submit your own write-ups for the rest of the questions. Each question’s writeup
should contain:

e A description of the vulnerability and the exploit
e How any relevant “magic numbers” were determined
e gdb output demonstrating the before/after of the exploit working

With the help of the example write-up, write out the input that will cause orbit to
spawn a shell. A video demo is also available at this link.

Note: the example will have been customized differently, so you will need to follow the
steps to find the correct addresses for your customized VM.

OUTWARD!

!Shellcode is x86 machine code which performs some action-typically spawning a shell for further attacker
interaction.

Project 1 Page 5 of 16 CS 161 — Spring 2021

https://cs161.org/lecture?kaltura_video_id=1_x2y2igh7

Example Write—Up
Main Idea

The code is vulnerable because gets(buf) does not check the length of the input from
the user, which lets an attacker write past the end of the buffer. We insert shellcode
above the saved return address on the stack (rip) and overwrite the rip with the address
of shellcode.

Magic Numbers

We first determined the address of the buf buffer (Oxbffffc18) and the address of the
rip of the orbit function (0Oxbffffc2c). This was done by invoking GDB and setting a
breakpoint at line 5.

(gdb) x/16x buf

Oxbffffc18: 0x41414141 O0xb7e5f200 O0xb7fed270 0x00000000
Oxbffffc28: Oxbffffcl8 0x0804842a 0x08048440 0x00000000
Oxbffffc38: 0x00000000 0xb7e454d3 0x00000001 Oxbffffcb4d
Oxbffffcd48: Oxbffffcbc O0xb7£dc858 0x00000000 Oxbffffclc
(gdb) i f

Stack frame at Oxbffffcl0:

eip = 0x804841d in orbit (orbit.c:8); saved eip 0x804842a

called by frame at Oxbffffc40
source language c.
Arglist at Oxbffffc28, args:
Locals at Oxbffffc28, Previous frame's sp is Oxbffffc30
Saved registers:
ebp at Oxbffffc28, eip at Oxbffffc2c

By doing so, we learned that the location of the return address from this function was
20 bytes away from the start of the buffer (Oxbffffc18 - Oxbffffc2c = 20).

Page 6 of 16 CS 161 — Spring 2021

Project 1

Exploit Structure

Here is the stack diagram.?

rip (Oxbffffc2c)
stp

compiler padding

buf (Oxbffffci1s)

The exploit has three parts:
1. Write 20 dummy characters to overwrite buf, the compiler padding, and the sfp.

2. Overwrite the rip with the address of shellcode. Since we are putting shellcode
directly after the rip, we overwrite the rip with Oxbffffc30 (Oxbffffc2c + 4).

3. Finally, insert the shellcode directly after the rip.

This causes the orbit function to start executing the shellcode at address Oxbffffc30
when it returns.

Exploit GDB Output

When we ran GDB after inputting the malicious exploit string, we got the following
output:

(gdb) x/16x buf

Oxbffffcl18: 0x61616161 0x61616161 0x61616161 0x61616161
Oxbffffc28: 0x61616161 Oxbffffc30 0xcdb8326a 0x89c38980
Oxbffffc38: 0x58476acl 0xc03180cd 0x2f2f6850 0x2f686873
Oxbffffc48: 0xb46e6962 0x8953505b 0xb0d231el 0x0080cdOb

After 20 bytes of garbage (blue), the rip is overwritten with 0xbffffc30 (red), which
points to the shellcode directly after the rip (green).?

2You don’t need a stack diagram in your writeup.
3You don’t need to color-code your gdb output in your writeup.

Project 1 Page 7 of 16 CS 161 — Spring 2021

Writing the egg Script

To integrate your solution with the exploit scaffold, we want the egg script to output
your malicious input to the C program. This can be done in any scripting language you
want, but we recommend Python 2 (not 3, because of the distinction between unicode
bytes and strings).

First, create a blank egg file. (touch egg will do the job.) Give the file permission to
be run as an executable script by running chmod +x egg.

In this project, you will need to chmod any new scripts you create.

Since the egg executable doesn’t have a file extension, the shell won’t know what type
of code it contains. To indicate that this is a Python file, we will include a shebang line
at the top of the egg file:

#!/usr/bin/env python2
In this project, you will need to add shebangs to any script you create.

The rest of the script should print your malicious input to stdout, so that exploit can
feed it to orbit. A simple print statement does the job in Python.

Debugging

If your exploit doesn’t work, you can use gdb to debug it. To do this, we will need to
use the 10 operators (< and >) to redirect input and output.

Recall that < is used for input redirection, and uses the righthand-side as the lefthand-
side’s input. > is used for output redirection, and sends the lefthand-side’s output to the
righthand-side.

First, we will run egg and save its output into a file foo.txt:
$./egg > foo.txt

Then, we will open the debugger with ./debug-exploit. After you're finished running
layout split and setting breakpoints, run the following command in gdb to start the
program:

(gdb) r < foo.txt

From here, you can use gdb as you normally would, and any calls for input will read
from the foo.txt file you created.

Note: Recall that x86 is little-endian so the first four bytes of the shellcode will appear as
0xcd58326a in the debugger. To write 0x12345678 to memory, use \x78\x56\x34\x12.

Deliverables. A script egg. No writeup required for this question only.

We recommend you test each of your scripts against the autograder (see the submission
instructions) in order to debug potential issues before the project deadline.

Project 1 Page 8 of 16 CS 161 — Spring 2021

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Endianness

Question 2 Spica (Launched 1977) (Password: alanguage) (20 points)

The logs inside the Remus satellite contain a cryptic reference to a highly intelligent
bot. Of course, you had heard of the urban legend of EvanBot, the top-secret
genius Al that single-handedly developed Caltopian space travel technology, but
the message in Remus suggests that it may be more than a legend.

You decide to investigate further and follow the hint to Spica. Spica is an old Gobian
Union geolocation satellite with a utility for viewing telemetry log files. Exploit
this utility and hack into Spica to see what secrets it holds about the mysterious
EvanBot.

Starter files

Log into the spica account on the VM using the password you learned in the previous
question. 1s to see the starter files.

telemetry is the vulnerable C program in this question. It takes a file and prints out
its contents, but it expects the file to be specially formatted: the first byte of the file
specifies its length, followed by the actual file.

The starter files contain a small helper script generate-file-contents. This script
takes arbitrary input and outputs the first 127 bytes in the format that telemetry
expects:

Example invocation:
$./generate-file-contents < calibration.txt

This helper script always generates safe files to be used with the telemetry program,
but nothing prevents you from instead feeding telemetry an arbitrary file of your choice.

Your task

exploit takes the output of your egg script, saves it in a file, and then uses that file
as input to telemetry. In other words, when telemetry calls fread, it reads from the
output of your egg script.

Debugging

No input and output redirection needed for this question. debug-exploit automatically
feeds the output of your egg script into the C program. You can start running the
program in gdb with just run or r.

Deliverables. A script egg and a writeup. Make sure the script works by running
./exploit and checking that you are able to run cat README and see the next password.

Project 1 Page 9 of 16 CS 161 — Spring 2021

Question 3 Polaris (Launched 1998) (Password: tolearn) (20 points)

The Spica logs seem to be definitive proof of EvanBot’s existence, but without
further clues, you seem to have hit a dead end. Luckily, some time later, CSA
assigns you to deorbit Polaris, a former Gobian spy satellite.

As the space race became more competitive, newer Gobian Union satellites like
Polaris introduced stack canaries to protect top-secret information from enemy spies.
Although stack canaries were considered state-of-the-art defense at the time, we now
know that they can be defeated.

Hack into Polaris to see what intelligence it contains, and don’t forget to deorbit it
afterwards.

For this question, stack canaries are enabled. The stack canary in this question is 4
random bytes (no null byte) that change each time you run the program. We recommend
trying Q1 on HW2 before attempting this question.

Starter files

Update (Monday, February 1): We found a mistake in the starter code. The line
assert p.recv(5) == ’testA’ should say assert p.recv(6) == ’testA\n’, because
the C program sends back a newline. We recommend commenting out both of those
lines (p.send and p.recv) before proceeding with this question so the missing newline
doesn’t affect future calls to p.recv.

The vulnerable dehexify program takes an input and converts it so that its hexadecimal
escapes are decoded into the corresponding ASCII characters. Any non-hexadecimal
escapes are outputted as-is. For example:

$./dehexify

\x41\x42 # outputs AB
XYZ # outputs XYZ
Control-D ends input

Note that we are not inputting the byte \x41 here. Instead, we are inputting a literal
backslash and the literal characters x, 4, and 1.

Also note that you can decode multiple inputs within a single execution of a program.

Your task

Your exploit for this question will go in an interact script instead of a egg script. To
get started, copy over the starter code and make it writable by running:

cp interact.scaffold interact
chmod +w interact

Project 1 Page 10 of 16 CS 161 — Spring 2021

The exploit script simply runs your interact script three times in a row (since your
solution might have a small chance of failure.)

The interact API

The interact script lets you send multiple inputs and read multiple outputs from a
program. In particular, you have access to the following variables and functions:

1. SHELLCODE: This variable contains the shellcode that you should execute. Rather
than opening a shell, it prints the README file, which contains the password. Note
that this is different from the shellcode in the previous two questions.

2. p.send(s): This function sends a string s to the C program. You must include
a newline \n at the end your input string s (this is like pushing “Enter” when
manually typing input). The newline is not sent to the C program.

3. p.recv(n): This function reads n bytes from the C program’s output.
As an example, we can write the session from before using this API.

p-send('\\x41\\x42' + '\n') # newline not sent to C program

assert p.recv(3) == 'BC\n' # newline printed by C program
p.send('XYZ' + '\n')

foo = p.recv(4) # save C program output in a variable
assert foo == 'XYZ\n'

Note that in Python, to send a literal backslash character, you must escape it as \\.

Debugging

Input and output redirection does not work in this question, because it involves multiple
inputs and outputs. Instead, you will need to type your desired input into gdb directly:

1. Run ./debug-exploit to start gdb.

2. Set appropriate breakpoints and layout split if desired.
3. Start the program without any arguments (run or r).
4

. When you step over the call to gets, gdb will wait for your input. Type in your
input and hit enter.

Note that you cannot type special byte characters directly into gdb. For example, if you
type \x12, gdb will input a literal backslash and the literal characters x, 1, and 2.

Additionally, you can use print statements in your interact script for debugging. These
will be directly printed to the terminal (and not sent to the program). For example, the
following line prints out the Python variable foo as hex characters:

print(" ".join("{:02x}".format(ord(c)) for c in foo))

Project 1 Page 11 of 16 CS 161 — Spring 2021

Tips

e Important: In this question, gets appends two null bytes after your input, not
one. This will affect your exploit slightly.

e You might want to save some C program output and input part of it back into the
C program. No hex decoding or little-endian reversing is necessary to do this. For
example:

foo = p.recv(12) # receive 12 bytes of output
bar = foo[4:8] # slice the second word of the output
p.send(bar) # send the second word back to the C program

e In the second p.send, m # 16. If you have m = 16, notice that the function doesn’t
immediately return after the gets call. Make sure to account for the extra logic so
that the stack is set up correctly when the function returns.

Deliverables. A script interact and a writeup. Make sure the script works by running
./exploit.

It may be difficult to show GDB output for this question. For this question only, it’s
sufficient to show the GDB output after your first input to the program, along with a
stack diagram showing how any future inputs would conceptually change the stack.

Project 1 Page 12 of 16 CS 161 — Spring 2021

Question 4 Vega (Launched 1999) (Password: whyishould) (20 points)

Vega was a spacecraft developed in a joint mission between Caltopia and the Gobian
Union. However, since Caltopia used all uppercase in its software, and the Gobian
Union used all lowercase, a utility was needed to convert between uppercase and
lowercase. Hack into Vega to learn the truth about EvanBot.

Starter files

The exploit script in this question is slightly different. The output of egg is used as
an environment variable, which means its value is placed at the top of the stack. The
output of arg is used as the input to the program.

Debugging

debug-exploit will automatically set up the environment variable and feed the output
of your arg script into the C program.

Tips

e It might help to read Section 10 of “ASLR Smack & Laugh Reference” by Tilo
Miiller. (ASLR is disabled for this question, but the idea of the exploit is similar.)

e It might also help to read Section 2.5 (off-by-one vulnerabilities) of the memory
safety notes.

e Environment variables are stored at the special pointer variable * ((char **)environ).
To see the address of environment variables in gdb, you can run

(gdb) x/2wx *((char **)environ)
(gdb) x/2wx *((char **)environ+1)
(gdb) x/2wx *((char **)environ+2)

e It may take some trial-and-error to find the output of egg among the environment
variables. One way to confirm you have the right address is to run x/2wx [your
address] and check that gdb displays what you put in egg.

e There is a slight chance (1 in 256) that your VM customization causes the value of
the sfp to end in \x00, which makes this question much harder to solve. You can
resolve this by printing out extra garbage bytes in your egg script (after whatever
you were printing before), which pushes the rest of the stack to different addresses.

Deliverables. Two scripts (egg and arg) and a writeup. Make sure the scripts work
by running ./exploit.

Project 1 Page 13 of 16 CS 161 — Spring 2021

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
https://cs161.org/assets/notes/memory-safety.pdf
https://cs161.org/assets/notes/memory-safety.pdf

Question 5 Deneb (Launched 2000) (Password: neveruseit) (20 points)

EvanBot’s message is alarming. Could the Caltopian Jupiter exploration project
have some secondary evil purpose? Following Bot’s advice, you decide to hack into
the Deneb satellite to investigate further.

The fear of the Y2K bug at the turn of the century drove Gobian engineers to
conduct a sweeping evaluation of its systems and correct any deficiencies. Deneb,
the first Gobian satellite launched in the 21st century, features a more secure version
of the original Spica file viewing utility.

Consider what security vulnerabilities occur during error checking. Which security prin-
ciples are involved in correctly implementing error checking?

Your task

Like Question 3, this question uses an interact script instead of an egg script. As
before, you have access to a SHELLCODE variable and the p.send(s) and p.recv(n)
functions. Refer to the interact API section of Question 3 for more information.

To get started, copy over the starter code and make it writable by running:

cp interact.scaffold interact
chmod +w interact

Debugging

You might find it helpful to use two terminals to debug this question. We suggest
looking into tmux. Alternatively, on the local (VirtualBox) setup, you can simply open
two terminals on your local computer and SSH into the VM on both terminals.

To start a debugging session:
e In terminal 1: Start gdb (./debug-exploit)
e In terminal 2: Start an interactive Python shell (python)
e In terminal 2: >>> from scaffold import *

To run any p.send and p.recv calls in your interact script, use terminal 1 to type
input or read output from gdb. For any other Python function calls in your interact
script, type the lines of Python code into terminal 2 to execute them.

Deliverables. A script interact and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 14 of 16 CS 161 — Spring 2021

Question 6 Rigel (Launched 2003) (Password: 58623) (20 points)

After reading the shocking revelations from Deneb, you realize that the Jupiter
mission is not what you thought it was. It must be aborted at all costs.

Rigel was one of the last satellites launched by the Gobian Union before its fall.
It uses ASLR, which at the time was the latest and most powerful defense against
memory exploits. Your final job is to hack into Rigel and get the blueprints to fully
understand Caltopia’s true intentions.

This part of the project enables ASLR.

Once you have logged into the rigel account, ASLR will stay enabled on your
VM. You’ll need to restart your VM if you’d like to go back to the previous
parts.

Note that even though ASLR is enabled, position-independent executables are not en-
abled. Therefore, the code section of memory is always at the same spot.

Tips

e It might help to read Section 8 of “ASLR Smack & Laugh Reference” by Tilo
Miiller.

Deliverables. A script egg and a writeup. Make sure the script works by running
./exploit.

Project 1 Page 15 of 16 CS 161 — Spring 2021

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Submission Summary

Submit your team’s writeup to the assignment “Project 1 Writeup”.

If you wish, you may submit feedback at the end of your writeup, with any feedback you may
have about this project. What was the hardest part of this project in terms of understanding?
In terms of effort? (We also, as always, welcome feedback about other aspects of the class).
Your comments will not in any way affect your grade.

You will need to move your team’s files off the VM and submit them to the “Project 1
Autograder” assignment on Gradescope.

Su]omitting from Option 1: Local Setup

We have provided a Python script that will fetch your solutions from your VM and zip them
into the directory structure required by Gradescope. To avoid conflicts with existing files,
we recommend running the script in an empty directory.

You will need to type in the password for customizer, as well as for each question you want
to submit a solution for. If you want to submit partially, simply ignore the password prompt
for any users you want to skip with ctrl4C.

Submitting from Option 2: Online Setup
If you used the online setup to work on this project, run the following command to submit:

$ ssh cs161-XXX@hiveYY.cs.berkeley.edu
\"cs161/projl/make-submission > projl-subm.zip

As usual, replace XXX with your instructional account login and YY with a hive machine
number (preferably with low load, remember to check Hivemind).

Note that the submission command does not have a -t flag, unlike the start and stop
commands.

This will create a projl-subm.zip file that you will be able to submit to the autograder.

Project 1 Page 16 of 16 CS 161 — Spring 2021

http://cs161.org/assets/projects/1/submit.py
https://hivemind.eecs.berkeley.edu/

