()

Midterm Review - Symmetric Cryptography

Question 1 True/false

Q1.1 TRUE or FALSE: All cryptographic hash functions are one-to-one functions.

O TRUE

FALSE

Solution: False. By definition, a hash function compresses an input which means you'll always have some collisions \implies not one-to-one. Cryptographic hash functions try to make finding those collisions difficult, but they still exist.

Q1.2 TRUE or FALSE: If k is a 128 bit key selected uniformly at random, then it is impossible to distinguish $AES_k(\cdot)$ from a permutation selected uniformly at random from the set of all permutations over 128-bit strings.

Clarification made during the exam: $AES_k(\cdot)$ refers to the encryption function of AES using key *k*.

TRUE

O FALSE

Solution: True. AES is believed to be secure, which means that no known algorithm can distinguish between $AES_k(\cdot)$ and a truly random permutation so long as k is selected uniformly at random.

Q1.3 TRUE or FALSE: A hash function that is one-way but not collision resistance can be securely used for password hashing.

TRUE

O FALSE

Solution: True. Collisions don't matter in this context as the only property we want is that an attacker can't invert a hash.

Q1.4 TRUE or FALSE: A hash function whose output always ends in 0 regardless of the input can't be collision resistant.

O TRUE

Solution: False. Consider H(x) = SHA256(x)||0. This hash is collision resistant but always ends in a 0.

Question 2 AES-CBC-STAR

(13 min)

Let E_k and D_k be the AES block cipher in encryption and decryption mode, respectively.

Q2.1 We invent a new encryption scheme called AES-CBC-STAR. A message M is broken up into plaintext blocks M_1, \ldots, M_n each of which is 128 bits. Our encryption procedure is:

 $C_0 = IV$ (generated randomly), $C_i = E_k(C_{i-1} \oplus M_i) \oplus C_{i-1}.$

where \oplus is bit-wise XOR.

 \diamond Write the equation to decrypt M_i in terms of the ciphertext blocks and the key k.

Solution: $M_i = D_k(C_i \oplus C_{i-1}) \oplus C_{i-1}$.

- Q2.2 Mark each of the properties below that AES-CBC-STAR satisfies. Assume that the plain-texts are 100 blocks long, and that $10 \le i \le 20$.
 - **□** Encryption is parallelizable.
 - Decryption is parallelizable.
 - □ If C_i is lost, then C_{i+1} can still be decrypted.
 - □ If we flip the least significant bit of C_i , this always flips the least significant bit in P_i of the decrypted plaintext.
 - □ If we flip a bit of M_i and re-encrypt using the same IV, the encryption is the same except the corresponding bit of C_i is flipped.

- If C_i is lost, then C_{i-1} can still be decrypted.
- If C_i is lost, then C_{i+2} can still be decrypted.
- If C_i is lost, then C_{i-2} can still be decrypted.
- □ If we flip the least significant bit of C_i , this always flips the least significant bit in P_{i+1} of the decrypted plaintext.
- □ It is not necessary to pad plaintext to the blocksize of AES when encrypting with AES-CBC-STAR.
- Q2.3 Now we consider a modified version of AES-CBC-STAR, which we will call AES-CBC-STAR-STAR. Instead of generating the IV randomly, the challenger uses a list of random numbers which are public and known to the adversary. Let IV_i be the IV which will be used to encrypt the *i*th message from the adversary.

Argue that the adversary can win the IND-CPA game.

Solution: Adversary sends two arbitrary (unequal but equal length), one-block messages (M, M') as the challenge. The resulting ciphertext is either $C_0 = IV_0 ||E_k(IV_0 \oplus M) \oplus IV_0$ or $C_0 = IV_0 ||E_k(IV_0 \oplus M') \oplus IV_0$.

Next the adversary sends $IV_1 \oplus IV_0 \oplus M$. The resulting ciphertext is $C_1 = IV_1 || E_k(IV_1 \oplus (IV_0 \oplus IV_1 \oplus M)) \oplus IV_1$, which simplifies to $IV_1 || E_k(IV_0 \oplus M) \oplus IV_1$. If the second block of $C_1 \oplus IV_1$ equals the second block of $C_0 \oplus IV_0$, then the challenger encrypted M. Otherwise the challenger encrypted M'. Hence we break IND-CPA with advantage significantly above $\frac{1}{2}$ (in fact such an adversary wins all the time).

An alternative solution is to send the challenger ciphertexts $M = IV_1$ and M' = anything else. If the challenger encrypts M, the message received is $E_k(0) \oplus IV_1$. Then for the second message, send IV_2 . If the output ciphertext $\oplus IV_1 \oplus IV_2$ equals the challenge ciphertext, then the challenger encrypted M. Otherwise they encrypted M'.

Question 3

(12 min)

Alice comes up with a couple of schemes to securely send messages to Bob. Assume that Bob and Alice have known RSA public keys.

For this question, *Enc* denotes AES-CBC encryption, *H* denotes a collision-resistant hash function, || denotes concatenation, and \bigoplus denotes bitwise XOR.

Consider each scheme below independently and select whether each one guarantees confidentiality, integrity, and authenticity in the face of a MITM.

Q3.1 (3 points) Alice and Bob share two symmetric keys k_1 and k_2 . Alice sends over the pair $[Enc(k_1, Enc(k_2, m)), Enc(k_2, m)]$.

■ (A) Confidentiality	\Box (C) Authenticity	\Box (E) —
□ (B) Integrity	□ (D)	\Box (F) —

Solution: Note that *Enc* denotes AES-CBC, not AES-EMAC, so we can only provide confidentiality. An attacker can forge a pair [Enc(k1, c1), c1] given [Enc(k1, c1||c2), c1||c2].

Q3.2 (3 points) Alice and Bob share a symmetric key k, have agreed on a PRNG, and implement a stream cipher as follows: they use the key k to seed the PRNG and use the PRNG to generate message-length codes as a one-time pad every time they send/receive a message. Alice sends the pair [$m \bigoplus$ code, $HMAC(k, m \bigoplus$ code)].

(G) Confidentiality	(I) Authenticity	□ (K) —
(H) Integrity	□ (J) ——	□ (L) —

Solution: This stream cipher scheme has confidentiality since the attacker has no way of coming up with the pseudorandomly generated one-time pads. *HMAC* provides the integrity and authentication.

Q3.3 (3 points) Alice and Bob share a symmetric key k. Alice sends over the pair [Enc(k, m), H(Enc(k, m))].

■ (A) Confidentiality	\Box (C) Authenticity	□ (E) —
□ (B) Integrity	□ (D)	\Box (F) —

Solution: Public hash functions alone do not provide integrity or authentication. Anyone can forge a pair c, H(c), which will pass the integrity check and can be decrypted.

Q3.4 (3 points) Alice and Bob share a symmetric key k. Alice sends over the pair [Enc(k, m), H(k||Enc(k, m))].

■ (G) Confidentiality	□ (I) Authenticity	\Box (K) —
□ (H) Integrity	□ (J) —	□ (L)

Solution: H(k||Enc(k, m)) is not a valid substitute for *HMAC* because it is vulnerable to a length extension attack.