
Weaver
Spring 2021

CS 161
Computer Security Discussion 7

SQL and Cookies

Question 1 Second-order linear... err I mean SQL injection ()
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds an
item to her cart, a POST request containing the field item is made. On receiving such a
request, NotAmazon executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +
"VALUES (’%s’, ’%s’)", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

(a) Alice is in desperate need of some toilet paper, but the website blocks her from
adding more than 72 rolls to her cart /Describe a POST request she can make to
cause the cart_add statement to add 100 rolls of toilet paper to her cart.

When a user visits their cart, NotAmazon populates the webpage with links to the items.
If a user only has one item in their cart, NotAmazon optimizes the query (avoiding joins)
by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +
"WHERE session=’%s’ LIMIT 1", sessionToken)

item := db.Query(cart_query)
link_query = fmt.Sprintf("SELECT link FROM items WHERE item=’%s’", item)
db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of
NotAmazon’s toilet paper at inflated prices. In a panic, NotAmazon fixes the vulnerability
by parameterizing the cart_add statement.

(b) Alice claims that parameterizing the cart_add statement won’t stop her toilet paper
trafficking empire. Describe how she can still add 100 rolls of toilet paper to her
cart. Assume that NotAmazon checks that sessionToken is valid before executing
any queries involving it.

Page 1 of 2



Question 2 Session Fixation ()
A session cookie is used by most websites in order to manage user logins. When the user
logs in, the server sends a randomly-generated session cookie to the user’s browser. The
server also stores the cookie value in a database along with the corresponding username.
The user’s browser sends the session cookie to the server whenever the user loads any
page on the site. The server then looks the session cookie up in the database and retrieves
the corresponding username. Using this, the server can know which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows: foobar.edu now estab-
lishes new sessions with session IDs based on a hash of the tuple (username, time
of connection). Is this secure? If not, what would be a better approach?

Discussion 7 Page 2 of 2 CS 161 – Spring 2021


