
Weaver
Spring 2021

CS 161
Computer Security Discussion 7

SQL and Cookies

Question 1 Second-order linear... err I mean SQL injection ()
Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds an
item to her cart, a POST request containing the field item is made. On receiving such a
request, NotAmazon executes the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +
"VALUES (’%s’, ’%s’)", sessionToken, item)

db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

(a) Alice is in desperate need of some toilet paper, but the website blocks her from
adding more than 72 rolls to her cart /Describe a POST request she can make to
cause the cart_add statement to add 100 rolls of toilet paper to her cart.

Solution: Note that Alice can see her own cookies so knows what sessionToken
is. She can perform some basic SQL injection by sending a POST request with
the item field set to:

toilet paper’), ($sessionToken, ’toilet paper’), ... ; --

Where $sessionToken is the string value of her sessionToken and
($sessionToken, ’toilet paper’) repeats 99 times. A similar attack could
also be done by modifying the sessionToken itself

When a user visits their cart, NotAmazon populates the webpage with links to the items.
If a user only has one item in their cart, NotAmazon optimizes the query (avoiding joins)
by doing the following:

cart_query := fmt.Sprintf("SELECT item FROM cart " +
"WHERE session=’%s’ LIMIT 1", sessionToken)

item := db.Query(cart_query)
link_query = fmt.Sprintf("SELECT link FROM items WHERE item=’%s’", item)
db.Query(link_query)

After part(a), Alice recognizes a great business opportunity and begins reselling all of
NotAmazon’s toilet paper at inflated prices. In a panic, NotAmazon fixes the vulnerability
by parameterizing the cart_add statement.

Page 1 of 4



(b) Alice claims that parameterizing the cart_add statement won’t stop her toilet paper
trafficking empire. Describe how she can still add 100 rolls of toilet paper to her
cart. Assume that NotAmazon checks that sessionToken is valid before executing
any queries involving it.

Solution: Alice can send a malicious POST request like part (a). Even though
her input won’t change the SQL statement from (a), it will still store her string
in the database. Now, if she visits her cart we’ll execute the optimized query.
Note that link_query doesn’t have any injection protections, so her input will
maliciously change the SQL statement. The item field in her POST request
should be something like:

toilet paper’; INSERT INTO cart (session, item) VALUES
($sessionToken, ’toilet paper’), ... ; --

Moral of the story: Securing external facing APIs/queries is not enough.

Discussion 7 Page 2 of 4 CS 161 – Spring 2021



Question 2 Session Fixation ()
A session cookie is used by most websites in order to manage user logins. When the user
logs in, the server sends a randomly-generated session cookie to the user’s browser. The
server also stores the cookie value in a database along with the corresponding username.
The user’s browser sends the session cookie to the server whenever the user loads any
page on the site. The server then looks the session cookie up in the database and retrieves
the corresponding username. Using this, the server can know which user is logged in.

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows: foobar.edu now estab-
lishes new sessions with session IDs based on a hash of the tuple (username, time
of connection). Is this secure? If not, what would be a better approach?

Solution:

(a) The main attack is known as session fixation. Say the attacker establishes a
session with foobar.edu, receives a session ID of 42, and then tricks the victim
into visiting http://foobar.edu/browse.html?sessionid=42 (maybe through
an img tag). The victim is now browsing foobar.edu with the attacker’s account.
Depending on the application, this could have serious implications. For example,
the attacker could trick the victim to pay his bills instead of the victim’s (as
intended).

Another possibility is for the attacker to fix the session ID and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previous
(attacker-set) session ID. For example, if the victim types in his username and
password at http://foobar.edu/login.html?sessionid=42, then the session
ID 42 would be bound to his identity. In such a scenario, the attacker could
impersonate the victim on the site. This is uncommon nowadays, as most login
pages reset the session ID to a new random value instead of reusing an old one.

(b) The proposed fix is not secure since it solves the wrong problem - it doesn’t fix
either issue. In fact, it makes things weaker by significantly reducing the entropy
of the session cookie.

The correct fix is for the server to generate cookie values afresh, rather than
setting them based on the session ID provided via URL parameters. Also, the
server shouldn’t allow cookies to be set by the URL. This makes the attackers

Discussion 7 Page 3 of 4 CS 161 – Spring 2021



job more difficult as they have to do some form of XSS in order to manipulate
the client’s cookie vs. just clicking on a link.

Discussion 7 Page 4 of 4 CS 161 – Spring 2021


