Cross Site Request Forgery

HTML Forms

« Allow a user to provide some data which gets sent with an
HTTP POST request to a server

<form action="bank.com/action.php">
First name:

First name: <input type="text" name="firsthame"> [ast name:

Last name:<input type="text" name="lastname">
Submit

<input type="submit" value="Submit"></form>

When filling in Alice and Smith, and clicking submit, the browser
Issues

HTTP POST request

bank.com/action.php?firstname=Alice&lastname=Smith
As always, the browser attaches relevant cookies

Consider the cookie stores the
session token

« Server assigns a random session token to
each user after they logged in, places it in the
cookie

* The server keeps a table of

| username -> session token], so when it
sees the session token it knows which user

 When the user logs out, the server clears the
session token

Session using cookies

Browser

[re—

Server

POST/login.Cgi

——

. jon t
get-cookle: sessi

oken

<

GET/pPosT

Cook
le: S .
token SSsion

CSRF Attack Basic Picture

Server Victim bank.com

Attack Server

3 Nng 1
bank.com Cig
]] Us
with session
token

What can go bad? URL contains transaction action

Cross Site Request Forgery (CSRF)

— User logs in to bank.com
 Session cookie remains in browser state

— User visits malicious site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>

— Browser sends user auth cookie with request
* Transaction will be fulfilled

 Problem:
— cookie auth is insufficient when side effects occur

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

ent=attacker&amou
Ll Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

Youlllil:] 2008 csrF

attack

An attacker could

 add videos to a user’s "Favorites,"

« add himself to a user’s "Friend" or "Family" list,

« send arbitrary messages on the user’s behalf,

» flagged videos as inappropriate,

e automatically shared a video with a user’s contacts,
subscribed a user to a "channel” (a set of videos
published by one person or group), and

» added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

Home -+ Security = Facebook Hit by Cross-Site Request Forgery Attack

Facebook Hit by Cross-Site Request Forgery Attack

By Sean Michael Kerner | August 20, 2009 [—— (224 |

Angela Moscaritolo

September 30, 2008

Popular websites fall victim to CSRF exploits

CSRF Defenses

e CSRF token

<input type=hidden value=23a3afolb>
RAILS

 Referer Validation

facebook Referer: http://www.facebook.com/home.php

« Others (e.g., custom HTTP Header) we won't go
Into

CSRF token

1. goodsite.com server wants to protect itself from
CSRF attacks, so it includes a secret token into the
webpage (e.g., in forms as a hidden field)

2. Requests to goodsite.com include the secret

3. goodsite.com server checks that the token
embedded in the webpage is the expected one;
reject request if not

Can the token be?

. 123456 CSRF token must be hard to

guess by the attacker
« Dateofbirth

How the token Is used

. The server stores state that binds the user's CSRF

token to the user's session token

. Embeds a fresh CSRF token in every form

. On every request the server validates that the

supplied CSRF token is associated with the user's
session token

. Disadvantage is that the server needs to maintain

a large state table to validate the tokens.

Regular use

Victim Browser

GET page

. age with form ”
cookie for bank.com: ORI www.bank.com

SessionlD =
CSRF 198.. Session| CSRF
523FA4cd2E | D token

523.. | 198..

Attack attempt

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

Session| CSRF
ID token
<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker> ;gf?re/:-r E:;c‘tSf('e/r/:Tv:/r\;)//;t't1acker com/blo 523 . 1 98 N
<input name=amount value=510 CSRF?? I ') &
</form> recipient=attacker&amount=$100 &CSRF??
<script>document.forms[01.submit()</script> Cookie: SessionlD=523FAdcd2E | nval |d
)
doesn’t know CSRF CSRF
: : ’
token for victim’s token

session (one might
not even be set at
the server if the user
did not request the
form recently)

Other CRSF protection: Referer
Validation

- When the browser issues an HTTP request, it includes a
referer header that indicates which URL initiated the
request

- This information in the Referer header could be used to
distinguish between same site request and cross site
request

Refer header

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

recipient=atta
Cookie: Sess

HTTP/1.1 200 OK

Transfer complete!

Referer

Referer Validation

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

[~ Remember me

or Sign up for Facebook

Forgot your password?

Referer Validation Defense

« HT TP Referer header

— Referer: http://www.facebook.com/ \/
— Referer: http://www.attacker.com/evil.ntml 3¢
— Referer: [empty]

« Strict policy disallows (secure, less usable)
 Lenient policy allows (less secure, more usable)

Privacy Issues with Referer header

. The referer contains sensitive information that impinges
on the privacy

. The referer header reveals contents of the search query
that lead to visit a website.

. Some organizations are concerned that confidential
information about their corporate intranet might leak to
external websites via Referer header

Referer Privacy Problems

» Referer may leak privacy-sensitive
information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

« Common sources of blocking:

— Network stripping by the organization
— Network stripping by local machine
— Stripped by browser for HTTPS -> HTTP transitions

— User preference in browser

Summary: CSRF

« CSRF attacks execute request on benign site
because cookie is sent automatically

 Defenses for CSRF:

— embed unpredictable token and check it
later

— check referer header in addition as
defense in depth

