
Computer Science 161 Spring 2020 Popa and Wagner

IP: “Best Effort ” Packet Delivery

• Routers inspect destination address, locate “next hop” in
forwarding table

• Address = ~unique identifier/locator for the receiving host

• Only provides a “I’ll give it a try” delivery service:

• Packets may be lost

• Packets may be corrupted

• Packets may be delivered out of order

39

source

destination

IP network

Computer Science 161 Spring 2020 Popa and Wagner

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to build
services our apps need out of IP’s modest layer-3 service

40

Computer Science 161 Spring 2020 Popa and Wagner

“Best Effort” is Lame! What to do?

• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:

• Connection oriented (explicit set-up / tear-down)

• End hosts (processes) can have multiple concurrent long-lived communication

• Reliable, in-order, byte-stream delivery
• Robust detection & retransmission of lost data

41

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Computer Science 161 Spring 2020 Popa and Wagner

TCP “Bytestream” Service

4

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process A on host H1

Process B
on host H2

B
yte 80

B
yte 80

Hosts don’t ever see packet boundaries, lost
or corrupted packets, retransmissions, etc.

Computer Science 161 Spring 2020 Popa and Wagner

Bidirectional communication:

5

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process B on host H2

Process A
on host H1

B
yte 73

B
yte 73

There are two separate bytestreams, one in each
direction

Computer Science 161 Summer 2020 Peyrin and Ryan

Ports: Analogy

∙ Alice is pen pals with Carol. Alice’s roommate Bob is also pen
pals with Carol.

∙ Carol’s replies are addressed to the same global (IP) address.
How to tell which letters are for Bob and which are for Alice?

Computer Science 161 Summer 2020 Peyrin and Ryan

Ports: Analogy

∙ Solution: Add a room number (port) inside the letter.
∙ In private homes like Alice/Bob, the port numbers are

meaningless.
∙ In a public office (server) like Cory Hall, the port numbers are

constant and known.

Computer Science 161 Summer 2020 Peyrin and Ryan

IP header: send to: 1.2.3.4

Ports

∙ Ports help us distinguish between different applications on a
computer or server

∙ Remember: TCP is built on top of IP, so the IP address is still
there

I’m hungry.

TCP header: send to: port 80

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

6

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

7

Ports are
associated
with OS
processes

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

8

Ports are
associated
with OS
processes

IP source & destination
addresses plus TCP
source and destination
ports uniquely identifies
a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

(IP Header)

(Link Layer Header)

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

9

Ports are
associated
with OS
processes

IP source & destination
addresses plus TCP
source and destination
ports uniquely identifies
a TCP connection

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
Some port numbers are
“well known” / reserved
e.g. port 80 = HTTP

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

10

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

11

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Byte streams
numbered
independently in
each direction

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

12

Starting
sequence
number (byte
offset) of data
carried in this
packet

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Byte stream
numbered
independently in
each direction

Sequence number assigned to start of
byte stream is picked when
connection begins; doesn’t start at 0

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

13

Acknowledgment
gives seq # just
beyond highest
seq. received in
order.

If sender sends
N bytestream
bytes starting at
seq S then “ack”
for it will be S+N.

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Spring 2020 Popa and Wagner

Sequence Numbers

14

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number from A

= 1st byte of
data

ACK sequence
number from B

= next
expected byte

Computer Science 161 Spring 2020 Popa and Wagner

TCP Header

15

Uses include:

acknowledging
data (“ACK”)

setting up (“SYN”)
and closing
connections
(“FIN” and “RST”)

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Spring 2020 Popa and Wagner

Establishing a TCP Connection

16

SYN

SYN+ACK

ACK

A B

Data
Data

• Three-way handshake to establish connection

• Host A sends a SYN (open; “synchronize sequence numbers”) 

to host B

• Host B returns a SYN acknowledgment (SYN+ACK)

• Host A sends an ACK to acknowledge the SYN+ACK

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based on
local clock)

Computer Science 161 Spring 2020 Popa and Wagner

Timing Diagram: 3-Way Handshaking

17

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()

listen()

accept(
)

Different starting initial
sequence numbers

(ISNs) in each direction

Computer Science 161 Summer 2020 Peyrin and Ryan

UDP

∙ UDP (User Datagram Protocol) is an alternative to TCP
∙ At the transport layer (layer 4), you have to choose TCP or UDP

Computer Science 161 Summer 2020 Peyrin and Ryan

UDP

∙ UDP offers no reliability guarantees (still best-effort), but it adds

ports

∙ Benefit: much faster than TCP (no handshake required)

∙ UDP header:

0 16-bit source port 16-bit destination port

32 16-bit length field 16-bit checksum

64 Payload: arbitrary data

Computer Science 161 Spring 2020 Popa and Wagner

TCP Conn. Setup & Data Exchange

3

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Spring 2020 Popa and Wagner

Abrupt Termination

• If A sends a TCP packet with RST flag to B and sequence
number fits, connection is terminated

• Unilateral, and takes effect immediately

4

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B X

Computer Science 161 Spring 2020 Popa and Wagner

TCP Threat: Disruption

aka RST injection
• The attacker can inject RST packets and block connection

• TCP clients must respect RST packets and stop all communication 

• Who uses this?

• China: The Great Firewall does this to TCP requests

• A long time ago: Comcast, to block BitTorrent uploads

• Some intrusion detection systems: To hopefully mitigate an attack in progress

5

Discuss with a partner: Who can do RST
injection? (a) off-path attacker, (b) on-path
attacker, (c) man-in-the-middle

Computer Science 161 Spring 2020 Popa and Wagner

TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker), attacker can inject data into
any TCP connection

• Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)

• A general means to take over an already-established connection!

• We are toast if an attacker can see our TCP traffic!

• Because then they immediately know the port & sequence numbers

6

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

Computer Science 161 Spring 2020 Popa and Wagner

TCP Data Injection

7

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker (AirPwn, QUANTUM, etc) 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”

Client
dutifully

processes
as server’s
response

Computer Science 161 Spring 2020 Popa and Wagner

TCP Data Injection

8

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”Client ignores since already

processed that part of
bytestream: the network
can duplicate packets 

so only pay attention to 
the first version in sequence

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Spring 2020 Popa and Wagner

TCP Threat: Blind Hijacking

• Is it possible for an off-path attacker to inject into a TCP
connection even if they can’t see our traffic?

• YES: if somehow they can infer or guess the port and
sequence numbers

9

Computer Science 161 Spring 2020 Popa and Wagner

TCP Threat: Blind Spoofing

• Is it possible for an off-path attacker to create a fake TCP
connection, even if they can’t see responses?

• Yes if somehow they can infer or guess the TCP initial
sequence numbers

• Why would an attacker want to do this?

• Perhaps to leverage a server’s trust of a given client as identified by its IP

address

• Perhaps to frame a given client so the attacker’s actions during the

connections can’t be traced back to the attacker

10

Computer Science 161 Spring 2020 Popa and Wagner

Blind Spoofing on TCP Handshake

11

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Spring 2020 Popa and Wagner

Blind Spoofing on TCP Handshake

12

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives this, will
be confused ⇒ send a RST back to server …
… So attacker may need to hurry!
But firewalls may inadvertently stop this reply to
the alleged client so it never sends the RST 🤔

Computer Science 161 Spring 2020 Popa and Wagner

Blind Spoofing on TCP Handshake

13

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t
get to see this packet!

Computer Science 161 Spring 2020 Popa and Wagner

Blind Spoofing on TCP Handshake

14

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker
figure out what value of y
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Spring 2020 Popa and Wagner

Reminder: Establishing a TCP Connection

15

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based on
local clock)

Hmm, any way
for the attacker
to know this?

Sure – make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a (Pseudo)-Random
ISN

Computer Science 161 Spring 2020 Popa and Wagner

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can
manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence

numbers (both directions) and TCP ports

• Remains a major threat today

• Blind spoofing no longer a threat

• Due to randomization of TCP initial sequence numbers

16

Computer Science 161 Spring 2020 Popa and Wagner

Ghost of blind spoofing...

• CVE-2016-5696

• "Off-Path TCP Exploits: Global Rate Limit Considered Dangerous" Usenix

Security 2016 https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/cao

• Key idea:

• RFC 5961 added some global rate limits that acted as an information leak:

• Could determine if two hosts were communicating on a given port

• Could determine if your guess at the sequence number is “in window”

• Once you get the sequence #s, you can then inject arbitrary content into the TCP

stream

• Fixed today
17

