
Computer Science 161 Spring 2020 Popa and Wagner

Lecture 22: 
Denial of Service

1https://cs161.org

Computer Science 161 Spring 2020 Popa and Wagner

Announcements

• I welcome your questions and feedback during lecture in
Zoom’s text chat

2

Computer Science 161 Spring 2020 Popa and Wagner

Attacks on Availability

• Denial-of-Service (DoS): preventing legitimate users from
using a computing service

• Distributed Denial-of-Service (DDoS) occurs when a server
is flooded with traffic from many different devices

3

Computer Science 161 Spring 2020 Popa and Wagner

Motivations for DoS

• Showing off / entertainment / ego

• Competitive advantage

• Maybe commercial, maybe just to win

• Vendetta / denial-of-money

• Extortion

• Political statements

• Impair defenses

• Espionage

• Warfare

4

Computer Science 161 Spring 2020 Popa and Wagner

Attacks on Availability

• Deny service via a program flaw (“*NULL”)

• E.g., supply an input that crashes a server

• E.g., fool a system into shutting down

• Deny service via resource exhaustion (“while(1);”)

• E.g., consume CPU, memory, disk, network

• Network-level DoS vs application-level DoS
15

Computer Science 161 Spring 2020 Popa and Wagner

DoS & Operating Systems

• How could you DoS a multi-user Unix system on which you
have a login?

16

• Open lots of connections/ports

• Start lots of processes

• Take up a lot of CPU

• Look for an input that causes something

critical to crash

• Create lots of /tmp files

• rm -rf /* ??

Computer Science 161 Spring 2020 Popa and Wagner

DoS & Operating Systems

• How could you DoS a multi-user Unix system on which you
have a login?

17

• char buf[1024];  
int f = open("/tmp/junk");  
while (1) write(f, buf,
sizeof(buf));
• Gobble up all the disk space!

• while (1) fork();
• Create a zillion processes!

• Create zillions of files, keep opening,
reading, writing, deleting

• Thrash the disk

Defenses?

Isolate users /
impose quotas

Computer Science 161 Spring 2020 Popa and Wagner

Network-level DoS

• Can exhaust network resources by

• Flooding with lots of packets (brute-force)

• DDoS: flood with packets from many sources

• Amplification: Abuse patsies who will amplify your traffic for you

18

Computer Science 161 Spring 2020 Popa and Wagner

DoS & Networks

• How could you DoS a target’s Internet access?

• Send a zillion packets at them

• Internet lacks isolation between traffic of different users!

• What resources does attacker need to pull this off?

• At least as much sending capacity (“bandwidth”) as the bottleneck link of the

target’s Internet connection

• Attacker sends maximum-sized packets

• Or: overwhelm the rate at which the bottleneck router can process packets

• Attacker sends minimum-sized packets! (in order to maximize the packet arrival rate)

19

Computer Science 161 Spring 2020 Popa and Wagner

Defending Against Network DoS

• Suppose an attacker has access to a beefy system with
high-speed Internet access (a “big pipe”).

• They pump out packets towards the target at a very high
rate.

• What might the target do to defend against the onslaught?

• Install a network filter to discard any packets that arrive with attacker’s IP

address as their source

• E.g., drop * 66.31.1.37:* -> *:*

• Or it can leverage any other pattern in the flooding traffic that’s not in benign traffic

• Attacker’s IP address = means of identifying misbehaving user

20

Computer Science 161 Spring 2020 Popa and Wagner

Filtering Sounds Pretty Easy …

• … but DoS filters can be easily evaded:

• Make traffic appear as though it’s from many hosts

• Spoof the source address so it can’t be used to filter

• Just pick a random 32-bit number of each packet sent

• Defender can’t filter this — best they can hope for is that operators around

the world implement anti-spoofing mechanisms (today ≥ 75% do)

• Use many hosts to send traffic rather than just one

• Distributed Denial-of-Service = DDoS

• No longer possible to filter based on source IP address

• Very cheap to acquire many hosts … :-(

21

Computer Science 161 Spring 2020 Popa and Wagner

It’s Not A “Level Playing Field”

• When defending resources from exhaustion, need to
beware of asymmetries, where attackers can consume
victim resources with little comparable effort

• Makes DoS easier to launch

• Defense costs much more than attack

• Particularly dangerous form of asymmetry: amplification

• Attacker leverages system’s own structure to pump up the load they induce

on a resource

22

Computer Science 161 Spring 2020 Popa and Wagner

Amplification

• Example of amplification: DNS lookups

• Reply is generally much bigger than request (since it includes a copy of the reply,

plus answers etc.)

• Attacker spoofs DNS request to a patsy DNS server, seemingly from the target

• Small attacker packet yields large flooding packet

• Doesn’t increase # of packets, but total volume

• Note #1: these examples involve blind spoofing

• So for network-layer flooding, generally only works for UDP-based protocols (can’t

establish TCP conn.)

• Note #2: victim doesn’t see spoofed source addresses

• Addresses are those of actual intermediary systems

23

Computer Science 161 Spring 2020 Popa and Wagner

Transport-Level Denial-of-Service

• TCP’s 3-way connection establishment handshake used to agree on
initial sequence numbers

• So a single SYN from an attacker suffices to force the server to spend
some memory

24

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, SeqNum = x, Ack = y + 1

Server

Server creates state
associated with
connection here 
(buffers, timers,
counters)Attacker doesn’t

even need to
send this ack

Computer Science 161 Spring 2020 Popa and Wagner

TCP SYN Flooding

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the

target

• What should target do when it has no more memory for a

new connection?

• No good answer!

• Refuse new connection? Legit new users can’t access service

• Evict old connections to make room? Legit old users get kicked off

25

Computer Science 161 Spring 2020 Popa and Wagner

TCP Syn Flooding Defenses

• How can the target defend itself? 

• Approach #1: make sure they have tons of memory!

• How much is enough?

• Depends on resources attacker can bring to bear (threat model), which might

be hard to know

26

Computer Science 161 Spring 2020 Popa and Wagner

TCP Syn Flooding Defenses

• Approach #2: identify bad actors & refuse their connections

• Hard because only way to identify them is based on IP address

• We can’t for example require them to send a password because doing so requires we

have an established connection!

• For a public Internet service, who knows which addresses customers might

come from?

• Plus: attacker can spoof addresses since they don’t need to complete TCP

3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”; only works
for spoofed SYN flooding)

27

Computer Science 161 Spring 2020 Popa and Wagner

• Server: when SYN arrives, rather than keeping state locally, send it to
the client …

•Client needs to return the state in order to established connection

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, SeqNum = x, Ack = y + 1, <State>

Server

28

Server only saves
state here

Do not save state
here; give to client

Computer Science 161 Spring 2020 Popa and Wagner

• Server: when SYN arrives, rather than keeping state locally, send it to
the client …

•Client needs to return the state in order to established connection

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, SeqNum = x, Ack = y + 1, <State>

Server

29

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal! 

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Computer Science 161 Spring 2020 Popa and Wagner

• Server: when SYN arrives, encode connection state entirely within
SYN-ACK’s sequence # y

– y = encoding of necessary state, using server secret

•When ACK of SYN-ACK arrives, server only creates state if value of y
from it agrees w/ secret

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, SeqNum = x, Ack = y + 1

Server

30

Server only creates
state here

Do not create 
state here

Instead, encode it here

y = T (lower bits of timestamp), <state>, 
 lower bits of HMAC(key, T, <state>, x, source port & IP, destination port & IP)]

Computer Science 161 Spring 2020 Popa and Wagner

SYN Cookies: Discussion

• Illustrates general strategy: rather than holding state, encode it so that
it is returned when needed

• For SYN cookies, attacker must complete 
3-way handshake in order to burden server

– Can’t use spoofed source addresses

• Note #1: strategy requires that you have enough bits to encode all the
state

– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check the cookie, then it’s not a
win

31

Computer Science 161 Spring 2020 Popa and Wagner

Application-Layer DoS

• Rather than exhausting network or memory resources, attacker can
overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to attacker
compared to target (asymmetry)

32

33

The link sends a request to the web server that
requires heavy processing by its “backend database”.

Computer Science 161 Spring 2020 Popa and Wagner

Algorithmic complexity attacks

• Attacker can try to trigger worst-case complexity of
algorithms / data structures

• Example: You have a hash table. 
Expected time: O(1). Worst-case: O(n).

• Attacker picks inputs that cause table collisions. 
Time per lookup: O(n). 
Total time to do n operations: O(n^2).

• Solution? Use algorithms with good worst-case running time.

• E.g., universal hash function guarantees that Pr[hk(x)=hk(y)] = 1/2^b, so hash

collisions will be rare.
34

Computer Science 161 Spring 2020 Popa and Wagner

Application-Layer DoS

• Rather than exhausting network or memory resources, attacker can
overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to attacker
compared to target (asymmetry)

• Defenses against such attacks?

• Approach #1: Only let legit users issue expensive requests

• Relies on being able to identify/authenticate them

• Note: that this itself might be expensive!

• Approach #2: Force legit users to “burn” cash

• Approach #3: massive over-provisioning ($$$)

35

Computer Science 161 Spring 2020 Popa and Wagner

DoS Defense in General Terms

• Defending against program flaws requires:

– Careful design and coding/testing/review

– Consideration of behavior of defense mechanisms

o E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒
denial-of-service

• Defending resources from exhaustion can be really hard. Requires:

– Isolation and scheduling mechanisms

o Keep adversary’s consumption from affecting others

– Reliable identification of different users

36

