Computer Science 161 Spring 2020 Popa and Wagner

Detection

|10

Structure of
FooCorp Web Services

Computer Science 161 Spring 2020

Popa and Wagner

— I TTH

FooCorp
Servers

2. GET /amazeme.exe?profile=xxx
8. 200 OK
Output of bin/famazeme
FooCorp’s
border router

i

]
..
o

Front-end web server

LI N 1 1

H
Ldk

Remote client

i
]
|’
"!
\‘ ;
A

h 4

bin/amazeme -p XxXx

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

Network Intrusion Detection

Computer Science 161 Spring 2020

- Approach #1: look at the network traffic
* (a “NIDS”: rhymes with “kids”)
 Scan HTTP requests
 Look for “/etec/passwd” and/or “../../” in requests

Indicates attempts to get files that the web server shouldn't provide

12

Structure of
FooCorp Web Services

Popa and Wagner

Computer Science 161 Spring 2020

2. GET /amazeme.exe?profile=xxx

8. 200 OK

a Output of bin/amazeme
Monitor sees a copy

T

fi ina/outqoi FooCorp
border router IC
T T |
m. Front-end web server
il -nlullﬁlja
o]|||||_|!|.|||-|||||| .)
Remote client NIDS |

bin/amazeme -p xxx

|3

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png
http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Network Intrusion Detection

Computer Science 161 Spring 2020

- Approach #1: look at the network traffic
* (a “NIDS”: rhymes with “kids”)
 Scan HTTP requests
 Look for “/etc/passwd” and/or“../../”

* Pros:

* No need to touch or trust end systems
Can “bolt on” security

* (Cheap: cover many systems w/ single monitor
* Cheap: centralized management

| 4

Inside the NIDS

Computer Science 161 Spring 2020

HIT TP Request

URL = /fubar/
Host = ...

HT TP Request
GET HTTP /baz/?id=1£413 1.1... URL = /baz/?1d=. ..
D = 11413

Sendmall
220 mail.domain.target ESMTP Sendmail... FrOm — SOmeguy@
To = otherguy@...

|5

Network Intrusion Detection (NIDS)

Computer Science 161 Spring 2020

« NIDS has a table of all active connections,
and maintains state for each

* e.g., has it seen a partial match of /etc/passwd?

- What do you do when you see a new packet not associated
with any known connection?

e (Create a new connection: when NIDS starts it doesn’t know what
connections might be existing

» New hotness: Network monitoring
* (Goal is not to detect attacks but just to understand everything.

16

Evasion

Computer Science 1 61 Spring 2020

- Assume RST will be received?
- Assume RST won'’t be received?
+ Other (please specify)

- What should NIDS do if it sees a RST packet”?

/etc/p

1

RST

T

glTa TR A
L .
=
u
o .
’ v

* NIDS

gl — ——

| = =
="‘l’. r N|
=) - al

|7

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Evasion

Computer Science 161 Spring 2020

- What should NIDS do if it sees this?

- Alert — It’s an attack
- No alert —it’s all good
 Other (please specify)

/%65%74%63/%70%61%73%73%77%64
—

=F T |

=" NIDS

|18

http://www.clker.com/cliparts/2/7/1/0/11949849491786662466cloud_jon_phillips_01.svg.med.png

Evasion

. Eva3|on attacks arise when you have “double parsing”

 Inconsistency - interpreted differently between the monitor
and the end system

- Ambiguity - information needed to interpret correctly Is
mMISsing

19

Evasion Attacks (High-Level View)

Computer Science 161 Spring 2020

- Some evasions reflect incomplete analysis
* In our FooCorp example, hex escapesor “..////.//../” alias

* |n principle, can deal with these with implementation care (make sure we fully
understand the spec)

Of course, in practice things inevitably fall through the cracks!

- Some are due to imperfect observability

* Forinstance, if what NIDS sees doesn’t exactly match what arrives at the
destination

* E.g., two copies of the “same” packet, which are actually different and with
different TTLs

20

Network-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

* |ssues:

¢ Scan for “/etc/passwd”?
What about other sensitive files?

e Scanfor“../../”?

Sometimes seen in legit. requests (= false positive)
What about “%$2e%2e%2f%2e%2e%2£”"? (= evasion)
Okay, need to do full HTTP parsing

What about “. .///.///..////77

Okay, need to understand Unix filename semantics too!

« What if it’'s HTTPS and not HTTP?
Need access to decrypted text / session key — yuck!

21

Host-based Intrusion Detection

Computer Science 161 Spring 2020

- Approach #2: instrument the web server

» Host-based IDS (sometimes called “HIDS”)

* Scan ?7arguments sent to back-end programs
Look for “/etec/passwd” and/or “../../”

22

C

Structure of
FooCorp Web Services

omputer Science 161 Spring 2020

Ay

4 -
~ 2>

Remote client

.

-

Popa and Wagner

FooCorp’s
border router

A

Ja—\

FooCorp
Servers

o

4. amazeme.exe?

profile=xxx

VA

6. Output of binfamazeme sent back

—

4

bin/famazeme -p XXX

23

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

Host-based Intrusion Detection

Computer Science 161 Spring 2020 Popa and Wagner

- Approach #2: instrument the web server

* Host-based IDS (sometimes called “HIDS”)

* Scan 7arguments sent to back-end programs
Look for “/etc/passwd” and/or“../../”

* Pros:

* No problems with HTTP complexities like %-escapes
* Works for encrypted HTTPS!

* |ssues:

 Have to add code to each (possibly different) web server
And that effort only helps with detecting web server attacks

« Still have to consider Unix filename semantics (“. .////.//")

o Still have to consider other sensitive files
24

Log Analysis

Computer Science 161 Spring 2020 Popa and Wagner

- Approach #3: each night, script runs to analyze log files
generated by web servers
* Again scan ?arguments sent to back-end programs

25

Structure of
FooCorp Web Services

Computer Science 161 Spring 2020 5 - Popa and Wagner

FooCorp

FooCorp’s Servers
border router

‘!L, Front—end web server

A

Remote client

h 4

bin/amazeme -p XxXx y

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

Log Analysis:
Aka "Log It All and let Splunk Sort It Out’

Computer Science 161 Spring 2020

Popa and Wagner

- Approach #3: each night, script runs to analyze log files generated by web
Servers

* Again scan ?arguments sent to back-end programs

* Pros:

 Cheap: web servers generally already have such logging facilities built into them
* No problems like %-escapes, encrypted HTTPS

* |ssues:

* Again must consider filename tricks, other sensitive files
 (Can’t block attacks & prevent from happening
* Detection delayed, so attack damage may compound

* |f the attack is a compromise, then malware might be able to alter the logs before they’re analyzed

(Not a problem for directory traversal information leak example)

Also can be mitigated by using a separate log server
27

System Call Monitoring (HIDS)

Computer Science 1 61 Spring 2020

- Approach #4: monitor system call activity of backend
Processes
 |Look for access to /etc/passwd

28

Structure of
FooCorp Web Services

Computer Science 161 Spring 2020

- Popa and Wagner

FooCorp’s
border router

‘!LA | Front-end web server
-

FooCorp
Servers

A

Remote client

4

5. bin/amazeme -p xxx 29

http://www.clker.com/cliparts/b/b/2/c/11949839472059691147network_cloud_david_klan_01.svg.hi.png

System Call Monitoring (HIDS)

Computer Science 161 Spring 2020 Popa and Wagner

- Approach #4: monitor system call activity of backend processes
* | ook for access to /etc/passwd

* Pros:

* No issues with any HI TP complexities
 May avoid issues with filename tricks

« Attack only leads to an “alert” if attack succeeded
Sensitive file was indeed accessed

e |ssues:

 Maybe other processes make legit accesses to the sensitive files (false positives)

» Maybe we’d like to detect attempts even if they fail?

“situational awareness”
30

Detection Accuracy

Computer Science 161 Spring 2020 Popa and Wagner

- Two types of detector errors:

* False positive (FP): alerting about a problem when in fact there was no problem
* False negative (FN): failing to alert about a problem when in fact there was a problem

- Detector accuracy is often assessed in terms of rates at which

these occur:

* Define | to be the event of an instance of intrusive behavior occurring (something we
want to detect)

* Define A to be the event of detector generating alarm

» Define:
« False positive rate = P[A|-l]
« False negative rate = P[-A| |]

Perfect Detection

Computer Science 161 Spring 2020 Popa and Wagner

» Is it possible to build a detector for our example with a false
negative rate of 0%?

- Algorithm to detect bad URLs with 0% FN rate:

void my detector that never misses(char *URL)

{

printf ("yep, it's an attack!\n");
}
* |n fact, it works for detecting any bad activity with no false negatives! Woo-hoo!

« Wow, so what about a detector for bad URLs that has no false
positives?
e printf ("nope, not an attack\n");

Detection Tradeoffs

Computer Science 161 Spring 2020 Popa and Wagner

- The art of a good detector Is achieving an effective balance
between FPs and FNs

» Suppose our detector has an FP rate of 0.1% and an FN
rate of 2%. Is it good enough? Which is better, a very low
FP rate or a very low FN rate?

* Depends on the cost of each type of error ...

E.g., FP might lead to paging a duty officer and consuming hour of their time; FN
might lead to $10K cleaning up compromised system that was missed

* ... but also critically depends on the rate at which actual attacks occur In
your environment

Base Rate Fallacy

Computer Science 161 Spring 2020 Popa and Wagner

» Suppose our detector has a FP rate of 0.1% (!) and a FN rate of 2% (not bad!)

- Scenario #1: our server receives 1,000 URLs/day, and 5 of them are attacks

* Expected # FPs each day =0.1% " 995 = 1
e Expected # FNseachday=2% *5=0.1 (< 1/week)
* Pretty good!

» Scenario #2: our server receives 10,000,000 URLs/day, and 5 of them are
attacks
 Expected # FPs each day = 10,000 :-(

- Nothing changed about the detector; only our environment changed
* Accurate detection very challenging when base rate of activity we want to detect is quite low

- This iIs why new recommendations have fewer mammograms and PSA tests...

Styles of Detection: Signature-Based

Computer Science 161 Spring 2020 Popa and Wagner

- |dea: look for activity that matches the structure of a known attack

- Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL NET any -> $HOME NET 139
flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Sighature-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

- E.qg. for FooCorp, searchfor“../../” or “/etc/passwd”

- What’s nice about this approach?
* Conceptually simple
* Takes care of known attacks (of which there are zillions)
 Easy to share signatures, build up libraries

- What’s problematic about this approach?

 Blind to novel attacks
« Might even miss variants of known attacks (“. .///.//../7)
Of which there are zillions

« Simpler versions look at low-level syntax, not semantics
Can lead to weak power (either misses variants, or generates lots of false positives)

Vulnerability Signatures

Computer Science 161 Spring 2020 Popa and Wagner

- |dea: don’t match on known attacks, match on known problems

- Example (also from Snort):
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msqg: '"Web-IIS ISAPI .ida attempt"
reference:bugtraq, 1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

- That is, match URIs that invoke *.ida?*, have more than 239 bytes of payload, and
have ACK set (maybe others t00)

- This example detects attempts to exploit a particular buffer overflow in lIS web servers

* Used by the “Code Red” worm
* (Note, signature is not quite complete: also worked for * . idb?*)

10

Styles of Detection: Anomaly-Based

Computer Science 161 Spring 2020

- |dea: attacks look peculiar.

- High-level approach: develop a model of normal behavior (say

based on analyzing historical logs). Flag activity that deviates
from It.

* FooCorp example: maybe look at distribution of characters in URL

parameters, learn that some are rare and/or don’t occur repeatedly

* |f we happen to learn that ‘.’s have this property, then could detect the attack even
without knowing it exists

- Big benefit: potential detection of a wide range of attacks,
iIncluding novel ones

Anomaly Detection Problems

Computer Science 161 Spring 2020

- Can fail to detect known attacks

- (Can fail to detect novel attacks, if don’t happen to look peculiar
along measured dimension

- What happens if the historical data you train on includes attacks?

- Base Rate Fallacy particularly acute: if prevalence of attacks is

low, then you’re more often going to see benign outliers

- High FP rate

- OR: require such a stringent deviation from “normal” that most attacks are missed (high FN
rate)

* Proves great subject for academic papers but not generally used

12

Specification-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

» |dea: don’t learn what’s normal; specify what’s allowed

* FooCorp example: decide that all URL parameters sent to
foocorp.com servers must have at most one ‘/’ in them

* Flag any arriving param with > 1 slash as an attack

- What’s nice about this approach?

» (Can detect novel attacks

 (Can have low false positives
If FooCorp audits its web pages to make sure they comply

- What’s problematic about this approach?

 EXpensive: lots of labor to derive specifications

And keep them up to date as things change (“churn”)
13

Styles of Detection: Behavioral

Computer Science 161 Spring 2020

- |dea: don’t look for attacks, look for evidence of compromise

- FooCorp example: inspect all output web traffic for any lines that
match a passwd file

- Example for monitoring user shell keystrokes:
unset HISTFILE

- Example for catching code injection: look at sequences of system
calls, flag any that prior analysis of a given program shows it can’t

generate

 E.g., observe process executing read(), open(), write(), fork(), exec|)
* ... but there’s no code path in the (original) program that calls those in exactly that order!

14

Behavioral-Based Detection

Computer Science 161 Spring 2020 Popa and Wagner

- What’s nice about this approach?

* (Can detect a wide range of novel attacks

 (Can have low false positives

Depending on degree to which behavior is distinctive
E.g., for system call profiling: no false positives!

 (Can be cheap to implement
E.g., system call profiling can be mechanized

- What’s problematic about this approach?

* Post facto detection: discovers that you definitely have a problem, w/ no opportunity to prevent it

* Brittle: for some behaviors, attacker can maybe avoid it

Easy enough to not type “unset HISTFILE”

How could they evade system call profiling?
Mimicry: adapt injected code to comply w/ allowed call sequences (and can be automated!)

15

Summary of Evasion Issues

Computer Science 161 Spring 2020 Popa and Wagner

- Evasions arise from uncertainty (or incompleteness) because detector must
infer behavior/processing it can’t directly observe
* A general problem any time detection separate from potential target

- One general strategy: impose canonical form (“normalize”)

* E.g., rewrite URLs to expand/remove hex escapes
 E.g., enforce blog comments to only have certain HTML tags

- Another strategy: analyze all possible interpretations rather than assuming one
 E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...

- Another strategy: Flag potential evasions
* So the presence of an ambiguity is at least noted

- Another strategy: fix the basic observation problem

* E.g., monitor directly at end systems
|16

Inside a Modern HIDS (“Antivirus”)

Computer Science 161 Spring 2020 Popa and Wagner

- URL/Web access blocking

* Prevent users from going to known bad locations

 Protocol scanning of network traffic (esp. HTTP)

e Detect & block known attacks
e Detect & block known malware communication

- Payload scanning

* Detect & block known malware
* (Auto-update of signatures for these)

 Cloud queries regarding reputation

e Who else has run this executable and with what results?

« \What’s known about the remote host / domain / URL?
| 7

Inside a Modern HIDS

Computer Science 161 Spring 2020 Popa and Wagner

- Sandbox execution

e Run selected executables in constrained/monitored environment

* Analyze:

System calls
Changes to files / registry
Self-modifying code (polymorphism/metamorphism)

* File scanning
e Look for malware that installs itself on disk

- Memory scanning
* |Look for malware that never appears on disk

* Runtime analysis

* Apply heuristics/signatures to execution behavior
|8

Inside a Modern NIDS

Computer Science 161 Spring 2020 Popa and Wagner

- Deployment inside network as well as at border
* QGreater visiblility, including tracking of user identity

» Full protocol analysis

* |Including extraction of complex embedded objects
* |n some systems, 100s of known protocols

- Signature analysis (also behavioral)

 Known attacks, malware communication, blacklisted hosts/domains
 Known malicious payloads
* Sequences/patterns of activity

- Shadow execution (e.g., Flash, PDF programs)
 Extensive logging (in support of forensics)
- Auto-update of signatures, blacklists

19

NIDS vs. HIDS

Computer Science 161 Spring 2020 Popa and Wagner

* NIDS benefits:

 (Can cover a lot of systems with single deployment
Much simpler management

* Easy to “bolt on” / no need to touch end systems
* Doesn’t consume production resources on end systems

e Harder for an attacker to subvert / less to trust

« HIDS benefits:

* (Can have direct access to semantics of activity

Better positioned to block (prevent) attacks
Harder to evade

« (Can protect against non-network threats
* Visibility into encrypted activity
* Performance scales much more readily (no chokepoint)

No issues with “dropped” packets
20

Key Concepts for Detection

Slgnature based vs anomaly detection
(blacklisting vs whitelisting)

- Evasion attacks
- Evaluation metrics: False positive rate, false negative rate
- Base rate problem

21

