
Pseudorandom generator
(PRG)

Pseudorandom Generator
(PRG)

• Given a seed, it outputs a sequence of
random bits

PRG(seed) -> random bits
• It can output arbitrarily many random

bits

PRG security
• Can PRG(K) be truly random?

No. Consider key length |K|=k. Have 2k

possible initial states of PRG. Deterministic
from then on. There are more random
states.

• A secure PRG suffices to “look” random
(“pseudo”) to an attacker (no attacker can
distinguish it from a random sequence)

Example of PRG: using block
cipher in CTR mode

If you want m random bits, and a block
cipher with Ek has n bits, apply the block
cipher m/n times and concatenate the
result:

PRG(K | IV) = Ek(IV|1) | Ek(IV| 2) | Ek(IV|3)
… Ek(IV| ceil(m/n)), where | is concatenation

Application of PRG: Stream
ciphers

• Another way to construct encryption
schemes

• Similar in spirit to one-time pad: it XORs
the plaintext with some random bits

• But random bits are not the key (as in
one-time pad) but are output of a
pseudorandom generator PRG

Application of PRG: Stream cipher

Enc(K, M):
– Choose a random value IV
– C = PRG(K | IV) XOR M
– Output (IV, C)

Q: How decrypt?
A: Compute PRG(K | IV) and XOR with ciphertext C
Q: What is advantage over OTP?
A: Can encrypt any message length because PRG
can produce any number of random bits, and
multiple times because IV is chosen at random in
Enc

