Public-key encryption

3. $\operatorname{Dec}(s k, c) \rightarrow m$

Correothess: $\forall P K, S K \in$ KeyGen, $\forall m, C=\operatorname{Enc}(P K, m)$

$$
\operatorname{Dec}(S K, C)=m
$$

Security: similar in spiritm IND-CPA
[Semantic secuntyl'

$$
\frac{C h}{\operatorname{KeyGen}() \rightarrow P K_{1} S K}
$$

chooses a message at random

$$
b \leftarrow\left\{\begin{array}{l}
m b
\end{array}\right.
$$

$\forall A d v$,
$\operatorname{Pr}\left[\right.$ Adv wins $\left.\cdot\left(b^{\prime}=b\right)\right] \leqslant 1 / 2+$ negl

ElGamal cryptosystem (1985)
keygen ()

- generate $\$$ a large prime $p(2048-b i t) \sim 2$
- $g \in[2, p-1]$
- generate $\$$ a secret key $k \in[2, p-2]$
- $p K=g^{K} \bmod p ;(g ; p$ public $)$

Publish PK, Keep SK secret
Due to the DLP assumption, cannot guess K

$$
\begin{aligned}
& \text { Enc }(B K, m): \frac{m \in\left[1, \ldots y p^{+}\right]}{} \quad \begin{array}{l}
\text { - pick } \$ r \in\left[1, \ldots, p^{-1}\right]
\end{array}
\end{aligned}
$$

Discrete log Problem must hold (not sufficient

$$
\left(g, p, g^{k}, C_{1}, C_{2} \approx\right.
$$

$\operatorname{Dec}\left(s k,\left(C_{1} ; c_{2}\right)\right): \frac{c_{2}}{c_{1}^{k}} \bmod p=m$ $\left.g, p, g^{k}, c_{1}, R\right)$
 correctness

El-Gamal Encryption Scheme
p-large prime
$g \in[2, p-\alpha]$-generator
g^{b} - Bob's publickey
m - Alice

Bob-b

- We know discrete \log is hard... how to build encryption from it?
... Embed message in exponent? ie. g^{m} \longrightarrow This hides the message but isn't decryptable
- We want something like m.k where k is only known to Alice $\&$ Bob

Idea: Use DH Key exch. to create a new K for every ciphertext

For each encryption:

- $K=g b r \longrightarrow$ Alice can compute since she knows r \& gb^{b}
\longrightarrow This is DH key exch. where $g b$ is static
- $c=\left(g^{r}, k \cdot m\right) \rightarrow$ Bob can compute k \& decrypt since he knows $g^{r} \& b$

El-Gamal Encryption can be thought as a OTP where the key is randomly generated on each encryption via DH Key Exch.

Padding
vary io message sizes
 planter bits
Enc: add padding
$\$$ padding scheme works
Dec: remove padding of size $<$ plantext bits
$m=101 \frac{00}{\text { arad }}$ Using this, you can
remove padding
encrypt 0 with ElGamal

What if I want to except a very long message? GB
Encrypt (PK, very long M):
generate $\$$ sym key K (AES-CTR)

$$
\begin{gathered}
\frac{\text { Enc }_{\text {sym }}(K, M)}{C_{1}} ; \frac{\operatorname{Enc}_{\text {pub }}(P K, K)}{C_{2}} \\
\operatorname{Decrypt}\left(\operatorname{SK}_{1}\left(\epsilon_{1} ; C_{2}\right)\right): \\
\operatorname{Dec} c_{\text {pub }}\left(S K, C_{2}\right) \rightarrow K \\
\operatorname{Dec} \text { sym }\left(K, C_{1}\right) \rightarrow M
\end{gathered}
$$

Digital signatures

Syntax:

$$
\begin{aligned}
& \operatorname{Keygen}() \rightarrow S K, P K \\
& \operatorname{sign}(S K, m) \rightarrow \operatorname{sig} \\
& \operatorname{Verify}(P K, m, \text { Sig }) \rightarrow 0 / 1
\end{aligned}
$$

Correctness: $\mathrm{Fm}_{m}, S K, P K$

$$
\begin{aligned}
& \text { ness: } V m, S K, P K \\
& \operatorname{Verify}(P K, m, \operatorname{sign}(S K, m))=1 \sqrt{ }
\end{aligned}
$$

Secunty: EU-CPA
existential unforgeable under CPA...

(Adv wins if $M^{\prime} \neq\left\{M_{i}\right\}$ and $\operatorname{Venfy}\left(P K_{1}, M_{1} s_{i g}\right)$ * Ad tv = Yes $\operatorname{Pr}[$ adv wins $] \leqslant$ neg

RSA Signature
Keygen (): pick two random primes p and 2 of 2048 bits $($ both $2 \bmod 3)$

$$
n=p 2=P K=n
$$

$\phi(n)=$ Euler's totient function
$=\#$ of integers $\geqslant 0$ that are $\operatorname{gcd}(\cdot, n)=1$
$\phi(n)=(p-1)(2-1)$ order of group modulo n

$$
\forall a, a^{\phi(n)} \equiv 1 \bmod n
$$

Compute d s.t. $\underbrace{3 d \equiv 1 \bmod \phi(n)}_{\|}$

$$
S K=d \quad \quad \exists r^{\mathbb{d}} \text { st. }
$$

$$
3 d=r \cdot \phi(n)+1
$$

$$
\begin{aligned}
& \operatorname{sign}\left(\underset{d^{\downarrow}}{S K}, m\right)=\frac{\operatorname{hash}}{H}(m)^{\infty} \bmod n \\
& \operatorname{venify}\left(\underset{d^{\downarrow}}{\substack{1 \\
n}} \operatorname{lig}_{n}, m, \operatorname{sig}\right): \operatorname{sig}^{3} \bmod n \stackrel{?}{=} H(m) \bmod
\end{aligned}
$$

$$
\begin{aligned}
& \text { Correctness: } \\
& \begin{aligned}
&\left(\operatorname{hash}(m)^{d}\right)^{3} \bmod n=\operatorname{hash}(m)^{3 d} \bmod n \\
&=\operatorname{hash}(m)^{r \cdot \phi(n)+1} \bmod n \\
&=\left(\operatorname{hash}(m)^{\phi(n)}\right)^{r} \cdot \operatorname{hash}(m) \\
& \bmod n \\
&=\operatorname{hash}(m) \bmod n
\end{aligned}
\end{aligned}
$$

$$
\operatorname{sign}(s k, m)=\underbrace{m^{d} \bmod n}_{s i g}\}
$$

How can you forge?
signature for 1 is 1
for 0 is 0

$$
\begin{aligned}
& \operatorname{sign}(S K, 1)=1^{d} \bmod n=1 \\
& \operatorname{sign}(S k, 0)=0^{d} \bmod n=0
\end{aligned}
$$

Necessary assumption for secunty:
No Adv can factor large numbers.
Difficulty of factonny problem
If cdr could factor

$$
n \Rightarrow p, q \Rightarrow \phi(n) \Rightarrow d=s k
$$

Trusted directory

Updating a key
Replay attack:

Assume elate happens securely

Attacker replays old in formation (old sig with old PK)

